如图,四棱锥
的底面是直角梯形,
,
,
和
是两个边长为
的正三角形,
,
为
的中点,
为
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.
(Ⅰ)证明:设
为
的中点,连接
,则![]()
∵
,
,
,
∴四边形
为正方形,
∵
为
的中点,
∴
为
的交点,
∵
,
∴
, ………………………………2分
∵![]()
,
∴![]()
,
,
在三角形
中,
,∴
,……………………………4分
∵
,∴
平面
; ……………………………5分
(Ⅱ)方法1:连接
,∵
为
的中点,
为
中点,
∴
,
∵
平面
,
平面
,
∴
平面
. ……………………………9分
方法2:由(Ⅰ)知
平面
,又
,所以过
分别做
的平行线,以它们做
轴,以
为
轴建立如图所示的空间直角坐标系,
由已知得:
![]()
,
,![]()
,
,
,
,
则
,
,
,
.
∴![]()
∴![]()
∵
平面
,
平面
,
∴
平面
; …………………………………9分
(Ⅲ) 设平面
的法向量为
,直线
与平面
所成角
,
则
,即
,
解得
,令
,则平面
的一个法向量为
,
又![]()
则
,
∴直线
与平面
所成角的正弦值为
. ………………………………………14分
科目:高中数学 来源: 题型:
(09年山东实验中学诊断三理)(13分)如图:四棱锥
的底面
是提醒,腰
,
平分
且与
垂直,侧面
都垂直于底面,平面
与底面
成60°角
(1)求证:
;
(2)求二面角
的大小![]()
![]()
![]()
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三第八次月考文科数学试卷 题型:解答题
如图,四棱锥
的底面是平行四边形,
平面
,
,
,
点
是
上的点,且
.
(Ⅰ)求证:
;
(Ⅱ)求
的值,使
平面
;
(Ⅲ)当
时,求三棱锥
与四棱锥
的体积之比.
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三上学期摸底理科数学 题型:解答题
((本小题满分14分)如图,四棱锥
的底面
是正方形,侧棱![]()
底面
,
,
、
分别是棱
、
的中点.
(1)求证:
; (2) 求直线
与平面
所成的角的正切值
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题
(本小题满分12 分)
如图,四棱锥
的底面是边长为
的菱形,
,
平面
,
,
为
的中点,O为底面对角线的交点;
(1)求证:平面
平面
;
(2)求二面角
的正切值。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com