精英家教网 > 高中数学 > 题目详情

已知,其中正整数

(1)求证:对于一切的正整数,都有

(2)求的最小值,其中约定

(1)证明:对于一切的正整数

.5分

(2)由不等式知

    ……10分

   ……15分

时,等于成立,所以有最小值.…20分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

规定,其中x∈R,m是正整数,且=1,这是组合数 (n、m是正整数,且m≤n)的一种推广。

(I)求的值。

(II)组合数的两个性质;①;②。是否都能推广到 (x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由;

(III)已知组合数是正整数,证明:当x∈Z,m是正整数时,∈Z。

查看答案和解析>>

科目:高中数学 来源: 题型:

规定=,其中x∈R,m是正整数,且,这是组合数(n、m是正整数,且m≤n)的一种推广.

(1)求的值.

(2)设x>0,当x为何值时,取最小值?

(3)我们知道组合数具有如下两个性质:

=;②+=.

是否都能推广到(x∈R,m是正整数)的情形?若能推广,请写出推广的形式,并给出证明;若不能,则说明理由.

(4)已知组合数是正整数,证明当x∈Z,m是正整数时,Z.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省无锡市高三上学期期中考试数学(解析版) 题型:解答题

.(本题满分16分)

已知等差数列的首项为,公差为b,等比数列的首项为b,公比为a(其中a,b均为正整数)。

(I)若,求数列的通项公式;

(II)对于(1)中的数列,对任意之间插入个2,得到一个新的数列,试求满足等式的所有正整数m的值;

(III)已知,若存在正整数m,n以及至少三个不同的b值使得等成立,求t的最小值,并求t最小时a,b的值。

 

查看答案和解析>>

科目:高中数学 来源:专项题 题型:解答题

规定,其中x∈R,m是正整数,且,这是组合数(n,m是正整数,且m≤n)的一种推广,
(Ⅰ)求的值;
(Ⅱ)组合数的两个性质:①;②
是否都能推广到(x∈R,m是正整数)的情形?若能推广,请写出推广的形式,并给出明;若不能,则说明理由;
(Ⅲ)已知组合数是正整数,证明:当x∈Z,m是正整数时,∈Z。

查看答案和解析>>

同步练习册答案