精英家教网 > 高中数学 > 题目详情

如图,△ABC的三边长分别是AC=3BC=4AB=5,以AB所在直线为轴,将此三角形旋转一周,求所得旋转体的表面积和体积.

答案:略
解析:

解:如图所示,所得的旋转体是两个底面重合的圆锥,高的和为AB=5,底面半径DC=


提示:

一直角三角形绕它的直角边所在直线旋转一周形成的曲面所围成的几何体叫做圆锥,但绕它的斜边所在直线旋转就不再是圆锥,这时我们可以自三角形的直角顶点C向斜边引垂线CD,垂足为D,线段CD将这个直角三角形分成两个直角三角形,ADBD分别是两个直角三角形的一条直角边,这样线段CD旋转一周形成的面将整个旋转分成了底面重合的两个圆锥.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC的内切圆与三边AB、BC、CA的切点分别为D、E、F,已知B(-
2
,0)
,C(
2
,0)
,内切圆圆心I(1,t).设A点的轨迹为L
(1)求L的方程;
(2)过点C作直线m交曲线L于不同的两点M、N,问在x轴上是否存在一个异于点C的定点Q.使
QM
QC
|
QM
|
=
QN
QC
|
QN
|
对任意的直线m都成立?若存在,求出Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年江西省抚州市高三质量检测数学试卷(文科)(解析版) 题型:解答题

如图,△ABC的内切圆与三边AB、BC、CA的切点分别为D、E、F,已知B(-,C,内切圆圆心I(1,t).设A点的轨迹为L
(1)求L的方程;
(2)过点C作直线m交曲线L于不同的两点M、N,问在x轴上是否存在一个异于点C的定点Q.使对任意的直线m都成立?若存在,求出Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年湖北省部分重点中学高三第二次联考数学试卷(理科)(解析版) 题型:解答题

如图,△ABC的内切圆与三边AB、BC、CA的切点分别为D、E、F,已知B(-,C,内切圆圆心I(1,t).设A点的轨迹为L
(1)求L的方程;
(2)过点C作直线m交曲线L于不同的两点M、N,问在x轴上是否存在一个异于点C的定点Q.使对任意的直线m都成立?若存在,求出Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省南通市海安中学高考数学信息试卷(解析版) 题型:解答题

如图,△ABC的内切圆与三边AB、BC、CA的切点分别为D、E、F,已知B(-,C,内切圆圆心I(1,t).设A点的轨迹为L
(1)求L的方程;
(2)过点C作直线m交曲线L于不同的两点M、N,问在x轴上是否存在一个异于点C的定点Q.使对任意的直线m都成立?若存在,求出Q的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案