精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
①求证:数列{lgan}是等差数列;
②设bn=
3
(lgan)(lgan+1)
求数列{bn}的前n项和Tn
①当n=1时,a2=9S1+10=9×10+10=100;
当n≥2时,由an+1=9Sn+10,an=9Sn-1+10,
可得an+1-an=9an,即an+1=10an,此式对于n=1时也成立.
∴数列{an}是以10为首项,10为公比的等比数列,
an=10×10n-1=10n
lgan+1-lgan=lg
an+1
an
=1,
∴数列{lgan}是以lga1=lg10=1,为首项,1为公差的等差数列;
②由①可得:lgan=lg10n=n,lgan+1=n+1,
bn=
3
n(n+1)
=3(
1
n
-
1
n+1
)

∴Tn=3[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=3(1-
1
n+1
)
=
3n
n+1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案