精英家教网 > 高中数学 > 题目详情

设等差数列的最大值为      

6


解析:

问题即为在上求目标函数的最大值,画出可行域知过点P(1,1)时

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1的中心在坐标原点O,焦点在x轴上,离心率为e=
3
2
,点P为椭圆上一动点,点F1、F2分别为椭圆的左、右焦点,且△PF1F2面积的最大值为
3

(1)求椭圆C1的方程;
(2)设椭圆短轴的上端点为A,点M为动点,且
1
5
|
F2A
|2
1
2
F2M
AM
AF1
OM
成等差数列,求动点M的轨迹C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设首项不为零的等差数列{an}前n项之和是Sn,若不等式an2+
Sn2n2
≥λa12
对任意an和正整数n恒成立,则实数λ的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•济宁一模)已知椭圆C1的中心在坐标原点O,焦点在x轴上,离心率为e=
3
2
,P
为椭圆上一动点,F1、F2分别为椭圆的左、右焦点,且△PF1F2面积的最大值为
3

(1)求椭圆C1的方程;
(2)设椭圆短轴的上端点为A、M为动点,且
1
5
|
F2A
|2
1
2
F2M
AM
AF1
OM
成等差数列,求动点M的轨迹C2的方程;
(3)过点M作C2的切线l交于C1与Q、R两点,求证:
OQ
OR
=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
3
=1上有n个不同的点P1,P2,P3,…,Pn.设椭圆的右焦点为F,数列{|PnF|}是公差大于
1
1003
的等差数列,则n的最大值为(  )

查看答案和解析>>

同步练习册答案