精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在原点,它在x轴上的一个焦点与短轴两端点连线互相垂直,且此焦点和x轴上的较近端点的距离为4(
2
-1),求椭圆方程.
分析:设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0),根据题意利用椭圆的对称性得到b=
a2-c2
=c且a-c=4(
2
-1),两式联解得到a、c之值,进而算出a2=32、b2=16,可得椭圆的方程.
解答:解:∵椭圆的中心在原点,焦点在x轴上,精英家教网
∴设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0),
设短轴的两个端点分别为A、B,左右焦点分别为F1、F2,连结AF2、BF2
∵一个焦点与短轴两端点连线互相垂直,
∴AF2⊥BF2
根据椭圆的对称性得到△ABF2是等腰直角三角形,可得|OA|=|0F2|.
∴b=c,即
a2-c2
=c…①,
又∵焦点和x轴上的较近端点的距离为4(
2
-1),
∴a-c=4(
2
-1)…②,
联解①②可得a=4
2
,c=4,可得a2=32,b2=c2=16
所求椭圆的方程为
x2
32
+
y2
16
=1
点评:本题给出椭圆满足的条件,求椭圆的标准方程.考查了椭圆的标准方程与简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,离心率为
2
2
,且椭圆经过圆C:x2+y2-4x+2
2
y=0的圆心C.
(1)求椭圆的方程;
(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点O,焦点在坐标轴上,直线y=2x+1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,对称轴为坐标轴,左焦点为F1(-3,0),右准线方程为x=
253

(1)求椭圆的标准方程和离心率e;
(2)设P为椭圆上第一象限的点,F2为右焦点,若△PF1F2为直角三角形,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,且椭圆过点P(3,2),焦点在坐标轴上,长轴长是短轴长的3倍,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,一个焦点F1(0,-2
2
),且离心率e满足:
2
3
,e,
4
3
成等比数列.
(1)求椭圆方程;
(2)直线y=x+1与椭圆交于点A,B.求△AOB的面积.

查看答案和解析>>

同步练习册答案