精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-
a
x

(1)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程
(2)若函数f(x)在[1,e]上数为最小值为
3
2
.求实数a的值.
分析:(I)由题意,f(x)的定义域为(0,+∞),且f(x)=
1
x
+
a
x2
=
x+a
x2
,由此能求出曲线y=f(x)在(1,f(1))处的切线方程.
(II)由f(x)=
x+a
x2
,进行分类讨论,能求出函数f(x)在[1,e]上数为最小值为
3
2
时实数a的值.
解答:解:(I)由题意,f(x)的定义域为(0,+∞),
f(x)=
1
x
+
a
x2
=
x+a
x2

由f′(1)=3,得a=2.又当a=2时,f(1)=-2,f′(1)=3,
所以曲线y=f(x)在(1,f(1))处的切线方程为3x-y-5=0.…(6分)
(II)由(I)知,f(x)=
x+a
x2

①若a≥-1,则x+a≥0,
即f′(x)≥0在[1,e]上恒成立,
f(x)在[1,e]上为增函数,
∴[f(x)]min=f(1)=-a=
3
2

∴a=-
3
2
,(舍去).  …(9分)
②若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,
f(x)在[1,e]上为减函数,
∴[f(x)]min=f(e)=1-
a
e
=
3
2

∴a=-
e
2
,(舍去). …(12分)
③若-e<a<-1,当1<x<-a时,f′(x)<0,
-e<a<-1,当1<x<-a时,f′(x)<0,
∴f(x)在(1,-a)上为减函数,
当-a<x<e时,f′(x)>0,∴f(x)在(-a,e)上为增函数,
∴[f(x)]min=f(-a)=ln(-a)+1=
3
2

∴a=-
e

综上所述,a=-
e
.…(15分)
点评:本题考查切线方程的求法,考查满足条件的实数值的求法.解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案