精英家教网 > 高中数学 > 题目详情

若对于区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意的x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-3a)与f2(x)=loga(a>0,a≠1),给定区间[a+2,a+3].

(1)若f1(x)与f2(x)在给定区间[a+2,a+3]上都有意义,求a的取值范围;

(2)讨论f1(x)与f2(x)在给定区间[a+2,a+3]上是否是接近的.

答案:
解析:

  解:(1)依题意a>0,a≠1,a+2-3a>0,a+2-a>0,∴0<a<1.

  (2)|f1(x)-f2(x)|=|loga(x2-4ax+3a2)|.

  令|f1(x)-f2(x)|≤1,得-1≤loga(x2-4ax+3a2)≤1,

  ∵0<a<1,又[a+2,a+3]在x=2a的右侧,

  ∴g(x)=loga(x2-4ax+3a2)在[a+2,a+3]上为减函数.①

  从而g(x)max=g(a+2)=loga(4-4a),g(x)min=g(a+3)=loga(9-6a),

  于是①成立,当且仅当解此不等式组,得0<a≤

  故当0<a≤时,f1(x)与f2(x)在[a+2,a+3]上是接近的;

  当a>且a≠1时,f1(x)与f2(x)在[a+2,a+3]上是非接近的.


提示:

解这类题目先一定要严格把握好题目中给出的新信息,本题中的“若对于区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意的x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的”这是定义,然后综合以前所学的知识灵活解题.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于区间[m,n]上有意义的两个函数f(x)与g(x),如果任意x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-3a)与f2(x)=loga
1x-a
(a>0,a≠1)
(1)求f1(x)-f2(x)的定义域;
(2)若f1(x)与f2(x)在整个给定区间[a+2,a+3]上都有意义,
①求a的取值范围;
②讨论f1(x)与f2(x)在整个给定区间[a+2,a+3]上是不是接近的.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于区间[m,n],定义n-m为区间[m,n]的长度,若函数f(x)=ax2-2x+1(a>0)在任意长度为2的闭区间上总存在两点x1,x2,使|f(x1)-f(x2)|≥1成立,则实数a的最小值为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
b|x|
(x≠0)

(1)若函数f(x)是(0,+∞)上的增函数,求实数b的取值范围;
(2)当b=2时,若不等式f(x)<x在区间(1,+∞)上恒成立,求实数a的取值范围;
(3)对于函数g(x)若存在区间[m,n](m<n),使x∈[m,n]时,函数g(x)的值域也是[m,n],则称g(x)是[m,n]上的闭函数.若函数f(x)是某区间上的闭函数,试探求a,b应满足的条件.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省济宁市曲阜师大附中高一(下)4月月考数学试卷(解析版) 题型:解答题

对于区间[m,n]上有意义的两个函数f(x)与g(x),如果任意x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-3a)与f2(x)=loga(a>0,a≠1)
(1)求f1(x)-f2(x)的定义域;
(2)若f1(x)与f2(x)在整个给定区间[a+2,a+3]上都有意义,
①求a的取值范围;
②讨论f1(x)与f2(x)在整个给定区间[a+2,a+3]上是不是接近的.

查看答案和解析>>

同步练习册答案