精英家教网 > 高中数学 > 题目详情

解答题

解关于x的不等式|x2-1|>2a-1(0<a<1).

答案:
解析:

  ①当2a-1<0,即0<a<时,不等式显然成立,解集为R.

  ②当2a-1≥0,即≤a<1时,不等式可化为x2-1>2a-1或x2-1<1-2a.

  ∴x2>2a或x2<2(1-a).∴解集为{x|x>或x<-}或{x|-<x<}.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
12
34

①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
x=1+2cosα
y=-1+2sinα
(a为参数),点Q极坐标为(2,
7
4
π).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范围.

查看答案和解析>>

科目:高中数学 来源:2004年高考教材全程总复习试卷·数学 题型:044

函数f(x)的定义域为D,如果存在x0∈D,使f(x0)=x0,则称点(x0,x0)为函数f(x)图象上的不动点.

(1)试证明:若定义在R上的奇函数f(x)的图象上存在有限个不动点,则不动点有奇数个.

(2)若函数f(x)=的图象上有两个关于直线x+y=3对称的不动点,求a的值.

查看答案和解析>>

科目:高中数学 来源:2004全国各省市高考模拟试题汇编(天利38套)·数学 题型:044

设函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图像上的不动点.

(Ⅰ)若函数f(x)=图像上有两点关于原点对称的不动点,求a、b应满足的条件;

(Ⅱ)在(Ⅰ)的条件下,若a=8,记函数f(x)图像上的两个不动点分别为A、B,M为函数图像上的另一点,且其纵坐标yM>3,求点M到直线AB距离的最小值及取得最小值时M点的坐标;

(Ⅲ)下述命题“若定义在R上的奇函数f(x)图像上存在有限个不动点,则不动点有奇数个”是否正确?若正确,请给予证明,并举出一例;若不正确,请举一反例说明.

查看答案和解析>>

科目:高中数学 来源:2007届中山二中数学(文科)模拟试题 题型:044

解答题

为了在如图所示的直河道旁建造一个面积为5000m2的矩形堆物场,需砌三面砖墙B、C、D、DE,出于安全原因,沿着河道两边需向外各砌10m长的防护砖墙A、B、EF,若当BC的长为xm时,所砌砖墙的总长度为ym,且在计算时,不计砖墙的厚度,求

(1)

y关于x的函数解析式y=f(x);

(2)

若BC的长不得超过40m,则当BC为何值时,y有最小值,并求出这个最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省莆田八中高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为(a为参数),点Q极坐标为(2,π).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且,求x+y+z的取值范围.

查看答案和解析>>

同步练习册答案