精英家教网 > 高中数学 > 题目详情
如图,在梯形ABCD中,ABDC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是(  )
A.1B.2C.4D.8
精英家教网

精英家教网
如图,过F作FE⊥CB于E,过M作BM⊥CD于M,
连接BF,CF,
∵ABDC,∠D=90°,AD=DC=4,AB=1,
并且F为AD的中点,
∴BF=
5
,CF=2
5

而CM=CD-AB=3,BM=4,
∴CB=5,
又∵
5
2
+(2
5
)2=52

∴△BFC是直角三角形,
∴S△BFC=
1
2
BF×CF=
1
2
BC×EF
∴BF×CF=EF×BC,
∴EF=2.
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.
(1)求证:BC⊥平面ACFE;
(2)当EM为何值时,AM∥平面BDF?证明你的结论;
(3)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,BD与AC相交于O,过O的直线分别交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,则EF=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在梯形ABCD中,对角线AC和BD交于点O,E、F分别是AC和BD的中点,分别写出
(1)图中与
EF
CO
共线的向量;
(2)与
EA
相等的向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四边形ACFE为矩形,平面ACFE上平面ABCD,CF=1.
(I)求证:BC⊥平面ACFE;
(II)若M为线段EF的中点,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),求cosθ.

查看答案和解析>>

同步练习册答案