设数列{an}的前n项的和Sn=![]()
,n=1,2,3,….
(1)求首项a1与通项an;
(2)设Tn=
,n=1,2,3,…,证明
.
(1)解:由Sn=![]()
,n=1,2,3,…. ①
得a1=S1![]()
.
所以a1=2.
再由①有Sn-1
an-1
×2n+
,n=2,3,…, ②
将①和②相减得an=Sn-Sn-1=
(an-an-1)-
×(2n+1-2n),n=2,3,….
整理得an+2n=4(an-1+2n-1),n=2,3,….
因而数列{an+2n}是首项为a1+2=4,公比为4的等比数列,即an+2n=4×4n-1=4n,n=1,2,3,….
因而an=4n-2n,n=1,2,3,….
(2)证明:将an=4n-2n代入①得
Sn=
×(4n-2n)-
×2n+1+![]()
=
×(2n+1-1)(2n+1-2)
=
×(2n+1-1)(2n-1).
Tn=
=![]()
![]()
(
).
所以,![]()
=
×(
.
科目:高中数学 来源: 题型:
| 3 |
| 2 |
| 3 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 10 |
| 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
| Sn |
| 5•2n |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com