精英家教网 > 高中数学 > 题目详情

设数列{an}的前n项的和Sn=,n=1,2,3,….

(1)求首项a1与通项an

(2)设Tn=,n=1,2,3,…,证明.

 

(1):由Sn=,n=1,2,3,….    ①

得a1=S1.

所以a1=2.

再由①有Sn-1an-1×2n+,n=2,3,…,           ②

将①和②相减得an=Sn-Sn-1=(an-an-1)-×(2n+1-2n),n=2,3,….

整理得an+2n=4(an-1+2n-1),n=2,3,….

因而数列{an+2n}是首项为a1+2=4,公比为4的等比数列,即an+2n=4×4n-1=4n,n=1,2,3,….

因而an=4n-2n,n=1,2,3,….

(2)证明:将an=4n-2n代入①得

Sn=×(4n-2n)-×2n+1+

=×(2n+1-1)(2n+1-2)

=×(2n+1-1)(2n-1).

Tn==().

所以,

=×(.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案