(Ⅰ)求f(
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
解:(Ⅰ)f(x)=![]()
=![]()
=2sin(
-
)
因为 f(x)为偶函数,
所以 对x∈R,f(-x)=f(x)恒成立,
因此 sin(-
-
)=sin(
-
).
即-sin
cos(
-
)+cos
sin(
-
)=sin
cos(
-
)+cos
sin(
-
),
整理得 sin
cos(
-
)=0.因为
>0,且x∈R,所以 cos(
-
)=0.
又因为 0<
<π,故
-
=
.所以 f(x)=2sin(
+
)=2cos
.
由题意得 ![]()
故 f(x)=2cos2x.
因为 ![]()
(Ⅱ)将f(x)的图象向右平移
个单位后,得到
的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到
的图象.
![]()
当 2kπ≤
≤2 kπ+ π (k∈Z),
即 4kπ+
≤x≤4kπ+
(k∈Z)时,g(x)单调递减.
因此g(x)的单调递减区间为
(k∈Z).
科目:高中数学 来源: 题型:
(09年泗阳中学模拟六)(14分)
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为![]()
(Ⅰ)求f(
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年山东卷理)(本小题满分12分)
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为![]()
(Ⅰ)求f(
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年陕西省高三第三次月考理科数学(普通班)(解析版) 题型:解答题
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为![]()
(1)求f(
)的值;
(2)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
科目:高中数学 来源:2010年江苏省高一第三阶段检测数学卷 题型:解答题
(本小题满分16分)
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为![]()
(Ⅰ)求f(
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com