精英家教网 > 高中数学 > 题目详情
已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,过点A的直线L与抛物线C2x2=4y交于B、C两点,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.
(1)求椭圆C1的方程;
(2)是否存在满足|PF1|+|PF2|=|AF1|+|AF2|的点P?若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由.
(1)设椭圆的标准方程为
x2
a2
+
y2
b2
=1(a>b>0)

由题意可得
22
a2
+
32
b2
=1
a2=b2+4
解得
a2=16
b2=12

∴椭圆C1的方程为
x2
16
+
y2
12
=1

(2)设点B(x1
1
4
x21
)
,C(x2
1
4
x22
)
,则
BC
=(x2-x1
1
4
(
x22
-
x21
))
BA
=(2-x1,3-
1
4
x21
)

∵A,B,C三点共线,∴
BC
BA

(x2-x1)(3-
1
4
x21
)=
1
4
(
x22
-
x21
)(2-x1)
,化为2(x1+x2)-x1x2=12.①
由x2=4y,得y=
1
2
x
.∴抛物线C2在点B处的切线方程为y-
1
4
x21
=
x1
2
(x-x1)
,化为y=
x1
2
x-
1
4
x21
.②
同理抛物线C2在点B处的切线方程为y=
x2
2
x-
1
4
x22
.③
设点P(x,y),由②③得
x1
2
x-
1
4
x21
=
x2
2
-
1
4
x22
,而x1≠x2,∴x=
1
2
(x1+x2)

代人②得y=
1
4
x1x2
,于是2x=x1+x2,4y=x1x2代人①得4x-4y=12,即点P的轨迹方程为y=x-3.
若|PF1|+|PF2|=|AF1|+|AF2|,则点P在椭圆C1上,而点P又在直线y=x-3上,直线经过椭圆C1的内部一点(3,0),
∴直线y=x-3与椭圆C1有两个交点,
∴满足|PF1|+|PF2|=|AF1|+|AF2|的点P有两个(不同于点A).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1的中心在坐标原点O,焦点在x轴上,离心率为e=
3
2
,点P为椭圆上一动点,点F1、F2分别为椭圆的左、右焦点,且△PF1F2面积的最大值为
3

(1)求椭圆C1的方程;
(2)设椭圆短轴的上端点为A,点M为动点,且
1
5
|
F2A
|2
1
2
F2M
AM
AF1
OM
成等差数列,求动点M的轨迹C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,求椭圆C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的中心在原点,离心率为
4
5
,焦点在x轴上且长轴长为10.过双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)
右焦点F2作垂直于x轴的直线交双曲线C2于M、N两点.
(I)求椭圆C1的标准方程;
(II)若双曲线C2与椭圆C1有公共的焦点,且以MN为直径的圆恰好过双曲线的左顶点A,求双曲线C2的标准方程;
(III)若以MN为直径的圆与双曲线C2的左支有交点,求双曲线C2的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的中心在原点,焦点在y轴上,离心率为
5
3
,且经过点M(
3
3
2
)

(Ⅰ)求椭圆C1的方程;
(Ⅱ)已知椭圆C2的长轴和短轴都分别是椭圆C1的长轴和短轴的m倍(m>1),中心在原点,焦点在y轴上.过点C(-1,0)的直线l与椭圆C2交于A、B两个不同的点,若
AC
=2
CB
,求△OAB的面积取得最大值时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•济宁一模)已知椭圆C1的中心在坐标原点O,焦点在x轴上,离心率为e=
3
2
,P
为椭圆上一动点,F1、F2分别为椭圆的左、右焦点,且△PF1F2面积的最大值为
3

(1)求椭圆C1的方程;
(2)设椭圆短轴的上端点为A、M为动点,且
1
5
|
F2A
|2
1
2
F2M
AM
AF1
OM
成等差数列,求动点M的轨迹C2的方程;
(3)过点M作C2的切线l交于C1与Q、R两点,求证:
OQ
OR
=0

查看答案和解析>>

同步练习册答案