精英家教网 > 高中数学 > 题目详情
21、已知抛物线y=x2-xcosθ+2sinθ-1(θ为参数).
(1)求此抛物线在x轴上两截距的平方和与θ的函数关系f(θ);
(2)求f(θ)的最小值和最大值.
分析:(1)设x2-xcosθ+2sinθ-1=0的两根为x1,x2,由题意知f(θ)=x12+x22=(x1+x22-2x1x2=cos2θ-4sinθ+2=-(sinθ+2)2+7.
(2)由f(θ)=-(sinθ+2)2+7,-1≤sinθ≤1,知当sinθ=-1时,f(θ)max=-1+7=6;当sinθ=1时,f(θ)min=-9+7=-2.
解答:解:(1)设x2-xcosθ+2sinθ-1=0的两根为x1,x2
则x1+x2=cosθ,x1x2=2sinθ-1,
由题意知f(θ)=x12+x22=(x1+x22-2x1x2=cos2θ-4sinθ+2
=-(sinθ+2)2+7.
(2)∵f(θ)=-(sinθ+2)2+7,-1≤sinθ≤1,
∴当sinθ=-1时,f(θ)max=-1+7=6;当sinθ=1时,f(θ)min=-9+7=-2.
故f(θ)的最小值是-2,最大值是6.
点评:本题以三角函数为载体,考查抛物线的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于(  )
A、3
B、4
C、3
2
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=-x2+ax+
12
与直线y=2x
(1)求证:抛物线与直线相交;
(2)求当抛物线的顶点在直线的下方时,a的取值范围;
(3)当a在(2)的取值范围内时,求抛物线截直线所得弦长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2+bx+c在其上一点(1,2)处的切线与直线y=x-2平行,则b、c的值分别为
-1、2
-1、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2+4ax-4a+3,y=x2+2ax-2a至少有一条与x轴相交,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2上有一定点A(-1,1)和两动点P、Q,当PA⊥PQ时,点Q的横坐标取值范围是(  )
A、(-∞,-3]B、[1,+∞)C、[-3,1]D、(-∞,-3]∪[1,+∞)

查看答案和解析>>

同步练习册答案