精英家教网 > 高中数学 > 题目详情
函数f(x)=3[sinx]的值域是
{
1
3
,1,3}
{
1
3
,1,3}
.(其中[x]表示不超过实数x的最大整数)
分析:先根据-1≤sinx≤1得到[sinx]的所有可能取值为-1,0,1;再代入函数解析式即可得到答案.
解答:解:∵-1≤sinx≤1,
所以[sinx]的所有可能取值为-1,0,1,
从而f(x)值域为{
1
3
,1,3}

故答案为:{
1
3
,1,3}
点评:本题主要考查正弦函数的值域的应用.解决问题的关键在于求出[sinx]的所有可能取值为-1,0,1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称f(x)为“S-函数”.
(1)判断函数f1(x)=x,f2(x)=3x是否是“S-函数”;
(2)若f3(x)=tanx是一个“S-函数”,求出所有满足条件的有序实数对(a,b);
(3)若定义域为R的函数f(x)是“S-函数”,且存在满足条件的有序实数对(0,1)和(1,4),当x∈[0,1]时,f(x)的值域为[1,2],求当x∈[-2012,2012]时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数:f(x)=
x-a+1
a-x
(a为常数).
(1)当f(x)的定义域为[a+
1
2
,a+1]时,求函数f(x)的值域;
(2)试问:是否存在常数m使得f(x)+f(m-x)+2=0对定义域内的所有x都成立;若有求出m,若没有请说明理由.
(3)如果一个函数的定义域与值域相等,那么称这个函数为“自对应函数”.若函数f(x)在[s,t](a<s<t)上为“自对应函数”时,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称f(x)为“S-函数”.
(1)判断函数f1(x)=x,f2(x)=3x是否是“S-函数”;
(2)若f3(x)=tanx是一个“S-函数”,求出所有满足条件的有序实数对(a,b);
(3)若定义域为R的函数f(x)是“S-函数”,且存在满足条件的有序实数对(0,1)和(1,4),当x∈[0,1]时,f(x)的值域为[1,2],求当x∈[-2012,2012]时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2011年上海市浦东新区高考数学一模试卷(理科)(解析版) 题型:解答题

已知函数f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称f(x)为“S-函数”.
(1)判断函数f1(x)=x,f2(x)=3x是否是“S-函数”;
(2)若f3(x)=tanx是一个“S-函数”,求出所有满足条件的有序实数对(a,b);
(3)若定义域为R的函数f(x)是“S-函数”,且存在满足条件的有序实数对(0,1)和(1,4),当x∈[0,1]时,f(x)的值域为[1,2],求当x∈[-2012,2012]时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2011年上海市浦东新区高考数学一模试卷(文科)(解析版) 题型:解答题

已知函数f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称f(x)为“S-函数”.
(1)判断函数f1(x)=x,f2(x)=3x是否是“S-函数”;
(2)若f3(x)=tanx是一个“S-函数”,求出所有满足条件的有序实数对(a,b);
(3)若定义域为R的函数f(x)是“S-函数”,且存在满足条件的有序实数对(0,1)和(1,4),当x∈[0,1]时,f(x)的值域为[1,2],求当x∈[-2012,2012]时函数f(x)的值域.

查看答案和解析>>

同步练习册答案