精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x-1
(x∈[2,6])
.,求f(x)的值域.
分析:先利用定义法判断函数f(x)的单调性,然后利用函数的单调性求出其值域;
解答:解:设2≤x1<x2≤6,
f(x1)-f(x2)=
2
x1-1
-
2
x2-1
=
2[(x2-1)-(x1-1)]
(x1-1)(x2-1)
=
2(x2-x1)
(x1-1)(x2-1)

∵2≤x1<x2≤6,
∴x2-x1>0,(x1-1)(x2-1)>0
∴f(x1)-f(x2)>0,即f(x1)>f(x2
∴f(x)在[2,6]上为减函数
∴函数f(x)=
2
x-1
在[2,6]的两个端点上分别取得最大值和最小值,
即f(x)的最大值为f(2)=2,
f(x)的最小值为f(6)=
2
5

故f(x)的值域为[
2
5
,2]
点评:此题主要考查利用函数的单调性求其值域,计算量比较大,是一道中档题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案