5£®Èçͼ£¬ÒÑÖªÍÖÔ²C1ÓëC2µÄÖÐÐÄÔÚ×ø±êÔ­µãO£¬³¤Öá¾ùΪMNÇÒÔÚxÖáÉÏ£¬¶ÌÖ᳤·Ö±ðΪ2m£¬2n£¨m£¾n£©£¬¹ýÔ­µãÇÒ²»ÓëxÖáÖØºÏµÄÖ±ÏßlÓëC1£¬C2µÄËĸö½»µã°´×Ý×ø±ê´Ó´óµ½Ð¡ÒÀ´ÎΪA¡¢B¡¢C¡¢D£®¼Ç¦Ë=$\frac{m}{n}$£¬¡÷BDMºÍ¡÷ABNµÄÃæ»ý·Ö±ðΪS1ºÍS2£®
£¨1£©ÉèÖ±Ïßl£ºy=kx£¨k£¾0£©£¬ÈôS1=3S2£¬Ö¤Ã÷£ºB£¬CÊÇÏß¶ÎADµÄËĵȷֵ㣻
£¨2£©µ±Ö±ÏßlÓëyÖáÖØºÏʱ£¬ÈôS1=¦ËS2£¬Çó¦ËµÄÖµ£»
£¨3£©µ±¦Ë±ä»¯Ê±£¬ÊÇ·ñ´æÔÚÓë×ø±êÖá²»ÖØºÏµÄÖ±Ïßl£¬Ê¹µÃS1=¦ËS2£¿²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÍÖÔ²µÄ¶Ô³ÆÐÔ£¬½áºÏS1=3S2£¬ÓÖÒòΪM£¬Nµ½Ö±ÏßlµÄ¾àÀëÏàµÈ£¬Ö¤³ö¼´¿É£»
£¨2£©ÓÉn+m=¦Ë£¨m-n£©£¬µÃµ½¦Ë2-2¦Ë-1=0£¬½â³ö¼´¿É£»
£¨3£©·Ö±ðÉè³öÍÖÔ²C1£¬C2ºÍlµÄ·½³Ì£¬µÃµ½£¨¦Ë-1£©xA=£¨¦Ë+1£©xB£¬Í¨¹ýÌÖÂۦ˵ķ¶Î§£¬´Ó¶øÇó³ö½áÂÛ£®

½â´ð £¨1£©Ö¤Ã÷£ºÒòΪS1=3S2£¬ÓÖÒòΪM£¬Nµ½Ö±ÏßlµÄ¾àÀëÏàµÈ£¬
ËùÒÔ|BD|=3|BA|£¬
ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬µÃµ½|DC|=|BA|£¬|CO|=|OB|£¬
ËùÒÔ|BC|=2|BA|⇒|BO|=|BA|£¬¼´BÊÇOAÖе㣬
ͬÀí£¬CÊÇODÖе㣬B£¬CÊÇADµÄËķֵ㣬µÃÖ¤£®
£¨2£©½â£ºÒòΪS1=¦ËS2£¬ËùÒÔn+m=¦Ë£¨m-n£©£¬
¡à¦Ë=$\frac{m+n}{m-n}$=$\frac{¦Ë+1}{¦Ë-1}$£¬
¡à¦Ë2-2¦Ë-1=0£¬
½âµÃ£º¦Ë=$\sqrt{2}$+1£¨Ð¡ÓÚ1µÄ¸ùÉáÈ¥£©£®
£¨3£©½â£ºÉèÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{m}^{2}}$=1£¨a£¾m£©£¬C2£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1£¬Ö±Ïßl£ºy=kx£¨k¡Ù0£©£¬
ÓÉ$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{m}^{2}}=1}\end{array}\right.$⇒x2=$\frac{{{a}^{2}m}^{2}}{{m}^{2}{{+a}^{2}k}^{2}}$£¬
¼´£º${{x}_{A}}^{2}$=$\frac{{{a}^{2}m}^{2}}{{m}^{2}{{+a}^{2}k}^{2}}$£¬Í¬Àí¿ÉµÃ£º${{x}_{B}}^{2}$=$\frac{{{a}^{2}n}^{2}}{{n}^{2}{{+a}^{2}k}^{2}}$£¬
ÓÖ¡ß¡÷BDMºÍ¡÷ABNµÄ¸ßÏàµÈ£¬
¡à$\frac{{S}_{1}}{{S}_{2}}$=$\frac{BD}{AB}$=$\frac{{x}_{B}{-x}_{D}}{{x}_{A}{-x}_{B}}$=$\frac{{x}_{B}{+x}_{A}}{{x}_{A}{-x}_{B}}$£¬
Èô´æÔÚ·ÇÁãʵÊýkʹµÃS1=¦ËS2£¬ÔòÓУ¨¦Ë-1£©xA=£¨¦Ë+1£©xB£¬
¼´£º$\frac{{{¦Ë}^{2}£¨¦Ë-1£©}^{2}}{{{¦Ë}^{2}n}^{2}{{+a}^{2}k}^{2}}$=$\frac{{£¨¦Ë+1£©}^{2}}{{n}^{2}{{+a}^{2}k}^{2}}$£¬½âµÃ£ºk2=$\frac{{{4n}^{2}¦Ë}^{3}}{{a}^{2}{£¨¦Ë}^{2}-2¦Ë-1£©{£¨¦Ë}^{2}+1£©}$£¬
¡àµ±¦Ë£¾1+$\sqrt{2}$ʱ£¬k2£¾0£¬´æÔÚÕâÑùµÄÖ±Ïßl£»
µ±1£¼¦Ë¡Ü1+$\sqrt{2}$ʱ£¬¦Ë2¡Ü0£¬²»´æÔÚÕâÑùµÄÖ±Ïߣ®

µãÆÀ ±¾Ì⿼²ìÁ˺¬ÓвÎÊýµÄÖ±ÏߺÍÍÖÔ²µÄ×ÛºÏÎÊÌ⣬µÚÈýÎÊÉè³öÍÖÔ²C1£¬C2ºÍlµÄ·½³Ì£¬µÃµ½£¨¦Ë-1£©xA=£¨¦Ë+1£©xBÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÏÂÁÐÈýº¯ÊýÖУ¬Óësin$\frac{¦Ð}{3}$ÊýÖµÏàͬµÄÊÇ£¨¡¡¡¡£©
¢Ùsin£¨n¦Ð+$\frac{4}{3}$¦Ð£©
¢Úcos£¨2n¦Ð+$\frac{¦Ð}{6}$£©£»
¢Ûsin£¨2n¦Ð+$\frac{¦Ð}{3}$£©£»
¢Ücos[£¨2n+1£©¦Ð-$\frac{¦Ð}{6}$]£»
¢Ýsin[£¨2n+1£©¦Ð-$\frac{¦Ð}{3}$]£¨n¡ÊZ£©£®
A£®¢Ù¢ÚB£®¢Ù¢Û¢ÜC£®¢Ú¢Û¢ÝD£®¢Ù¢Ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©·Ö±ðÊÇÍÖÔ²E£º$\frac{x^2}{a^2}$+${\frac{y}{b^2}^2}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£®
£¨¢ñ£©ÈôµãP£¨$\sqrt{3}$£¬2£©ÔÚÍÖÔ²EÉÏ£¬ÇÒc=$\sqrt{3}$£¬ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªÍÖÔ²EµÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬Èô¹ýµãF1£¨-c£¬0£©µÄÖ±Ïß½»ÍÖÔ²EÓÚA£¬BÁ½µã£¬ÇÒ|AF1|=3|F1B|£®Ö¤Ã÷£ºAB¡ÍAF2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}}$£¬£¨¦ÁΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñsin£¨¦È+\frac{¦Ð}{4}£©=4\sqrt{2}$£®ÉèPΪÇúÏßC1Éϵ͝µã£¬ÔòµãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵΪ3$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¹ýÆ½Ãæ¦ÁÍâÒ»Ö±Ïßm£¬×÷Æ½ÃæÓë¦ÁƽÐУ¬ÕâÑùµÄÆ½ÃæÓÐ0»ò1¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®sin$\frac{5¦Ð}{12}$=£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{\sqrt{3}}{4}$C£®$\frac{\sqrt{6}-\sqrt{2}}{4}$D£®$\frac{\sqrt{6}+\sqrt{2}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªµÈ²îÊýÁÐ1£¬-1£¬-3£¬-5£¬¡­£¬Ôò-89ÊÇËüµÄµÚ£¨¡¡¡¡£©Ï
A£®92B£®47C£®46D£®45

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÆ½ÃæÉϵ͝µãM£¨x£¬y£©µ½Á½¶¨µãF1£¨-4£¬0£©£¬F2£¨-1£¬0£©µÄ¾àÀëÖ®±ÈΪ2£®
£¨¢ñ£©ÊÔÇ󶯵ãMµÄ¹ì¼£·½³Ì£»
£¨¢ò£©ÒÑÖªµãA£¨0£¬2£©£¬Çó¡ÏF1AF2µÄƽ·ÖÏßËùÔÚµÄÖ±ÏßABµÄ·½³Ì£¨ÆäÖеãBÊÇÖ±ÏßABÓëxÖáµÄ½»µã£©£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬ÈôµãCÊǹ켣MÉÏÒìÓÚA£¬BµÄÈÎÒâÒ»µã£¬ÊÔÇó¡÷ABCµÄÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÒÔÍÖÔ²ÉÏÈÎÒ»µãÓë×ó£¬ÓÒ½¹µãF1£¬F2Ϊ¶¥µãµÄÈý½ÇÐεÄÖܳ¤Îª4£¨$\sqrt{2}$+1£©£®
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl1¹ýÔ­µãO£¬Ö±Ïßl2ÓëÖ±Ïßl1ÏཻÓÚµãQ£¬|$\overrightarrow{OQ}$|=1£¬ÇÒl2¡Íl1£¬Ö±Ïßl2ÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬ÎÊÊÇ·ñ´æÔÚÕâÑùµÄÖ±Ïßl2£¬Ê¹$\overrightarrow{AQ}$•$\overrightarrow{BQ}$=-1³ÉÁ¢£®Èô´æÔÚ£¬Çó³öÖ±Ïßl2µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸