精英家教网 > 高中数学 > 题目详情
12.点P所在轨迹的极坐标方程为ρ=2cosθ,点Q所在轨迹的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=4+2t}\end{array}\right.$(t为参数),则|PQ|的最小值是(  )
A.2B.$\frac{4\sqrt{5}}{5}$+1C.1D.$\frac{4\sqrt{5}}{5}$-1

分析 求出极坐标方程的直角坐标方程,求出圆心坐标以及半径,通过两点的距离公式函数的性质求出|PQ|的最小值.

解答 解:点P所在轨迹的极坐标方程为ρ=2cosθ,直角坐标方程为x2+y-2x=0,圆心(1,0),半径为1,
点Q所在轨迹的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=4+2t}\end{array}\right.$(t为参数),普通方程为2x-y+2=0,
圆心到直线的距离d=$\frac{4}{\sqrt{5}}$=$\frac{4\sqrt{5}}{5}$,
∴|PQ|的最小值是$\frac{4\sqrt{5}}{5}$-1,
故选D.

点评 本题是基础题,考查曲线的极坐标方程与直角坐标方程的互化,距离公式的应用,考查转化思想,计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数f(x)=sin(ωx+ϕ)$(ω>0,0<ϕ<\frac{π}{2})$,f(0)=$\frac{{\sqrt{2}}}{2}$,且对任意${x_1},{x_2}∈(\frac{π}{2},π)$均满足$\frac{{{x_1}-{x_2}}}{{f({x_1})-f({x_2})}}<0({x_1}≠{x_2})$,则ω的取值范围是$\frac{1}{2}$≤ω≤$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知二次函数f(x)满足f(0)=1且f(x+1)-f(x)=2x+2.
(Ⅰ)求f(x)的解析式; 
(Ⅱ)若g(x)=2f(x),x∈[-1,1],求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,四棱锥P-ABCD中,所有棱长均为2,O是底面正方形ABCD中心,E为PC中点,则直线OE与直线PD所成角为(  )
A.30°B.60°C.45°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正四棱柱ABCD-A1B1C1D1中,二面角A-A1C-D1的余弦值为$-\frac{{\sqrt{10}}}{5}$.
(1)求证:BD⊥A1C1
(2)在线段CC1上是否存在点P,使得平面A1CD1⊥平面PBD,若存在,求出$\frac{CP}{{P{C_1}}}$的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.4个男同学,3个女同学站成一排.
(1)3个女同学必须相邻,有多少种不同的排法?
(2)任何两个女同学彼此不相邻,有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若正方体ABCD-A1B1C1D1中,E、F分别是D1C1、AB的中点,则A1B1与截面A1ECF所成的角的正切值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{1}{3}a{x^3}+\frac{1}{2}(a+1){x^2}-(a+2)x+6$的极大值是f(-3)=15,
(1)是否存在极小值?若存在求出极小值.若不存在说明理由;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆x2+y2-2x-4y+3=0关于直线ax+by-1=0(a>0,b>0)对称,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为,9.

查看答案和解析>>

同步练习册答案