精英家教网 > 高中数学 > 题目详情
已知向量
m
=(sinx,-1)
,向量
n
=(
3
cosx,
1
2
)
,函数f(x)=(
m
+
n
)
m

(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)若方程f(x)-t=0在x∈[
π
4
π
2
]
上有解,求实数t的取值范围.
(I)∵
m
=(sinx,-1)
n
=(
3
cosx,
1
2
)

m
+
n
=(sinx+
3
cosx,-
1
2
),可得
f(x)=(
m
+
n
)
m
=sinx(sinx+
3
cosx)+
1
2
=sin2x+
3
sinxcosx+
1
2

∵sin2x=
1
2
(1-cos2x),sinxcosx=
1
2
sin2x
∴f(x)=
1
2
(1-cos2x)+
3
2
sin2x+
1
2
=sin(2x-
π
6
)+1
因此,f(x)的最小正周期T=
2
=π;
(II)∵x∈[
π
4
π
2
]
,可得2x-
π
6
∈[
π
3
6
]
∴sin(2x-
π
6
)∈[
1
2
,1],得f(x)=sin(2x-
π
6
)+1的值域为[
3
2
,2]
∵方程f(x)-t=0在x∈[
π
4
π
2
]
上有解,
∴f(x)=t在x∈[
π
4
π
2
]
上有解,可得实数t的取值范围为[
3
2
,2].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinθ,2cosθ),
n
=(
3
,-
1
2
)
,若
m
n
,则sin2θ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinωx,cosωx),
n
=(cosωx,cosωx)(ω>0)
,设函数f(x)=
m
n
且f(x)的最小正周期为π.
(1)求f(x)的单调递增区间;
(2)先将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,然后将图象向下平移
1
2
个单位,得到函数y=g(x)的图象,求函数y=g(x)在区间上[0,
4
]
上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinθ,2cosθ),
n
=(
3
,-
1
2
)
,当θ∈[0,π]时,函数f(θ)=
m
n
的值域是
[-1,2]
[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海二模)已知向量
m
=(sin(2x+
π
6
),sinx)
n
=(1,sinx),f(x)=
m
n

(1)求函数y=f(x)的最小正周期及单调递减区间;
(2)记△ABC的内角A,B,C的对边分别为a,b,c.若f(
B
2
)=
2
+1
2
,b=
5
,c=
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c.已知向量
m
=(sin 
A
2
,cos 
A
2
)
n
=(cos 
A
2
,-cos 
A
2
)
,且2
m
n
+|
m
|=
2
2
AB
AC
=1

(1)求角A的大小
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案