精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2-2x+1+alnx有两个极值点x1、x2,且x1<x2,则(  )
分析:对f(x)求导数,由f′(x)=0有两个不同的根x1,x2,利用判别式和根与系数的关系求a的取值范围;由x1、x2的关系,用x2把a表示出来,求出f(x2)表达式的最值即可.
解答:解:∵f(x)=x2-2x+1+alnx的定义域为(0,+∞).
∴f′(x)=2x-2+
a
x
=
2x2-2x+a
x

∵f(x)有两个极值点x1,x2
∴f′(x)=0有两个不同的根x1,x2,且0<x1<x2
∴2x2-2x+a=0的判别式△=4-8a>0,即a<
1
2

∴x1=
1-
1-2a
2
,x2=
1+
1-2a
2
.     ①
又∵x1+x2=1,x1•x2=
a
2
>0,
1
2
<x2<1,a=2x2-2x22
∴f(x2)=x22-2x2+1+(2x2-2x22)lnx2
令g(t)=t2-2t+1+(2t-2t2)lnt,其中
1
2
<t<1,
则g′(t)=2(1-2t)lnt.
当t∈(
1
2
,1)时,g′(t)>0,
∴g(t)在(
1
2
,1)上是增函数.
∴g(t)>g(
1
2
)=
1-2ln2
4

故f(x2)=g(x2)>
1-2ln2
4

故选:C.
点评:本题考查了利用导数研究函数的单调性与极值以及利用导数证明不等式成立的问题,是易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案