精英家教网 > 高中数学 > 题目详情

已知,则f[f(x)]≥1的解集是

[  ]
A.

B.

C.

(-∞,-1]∪[4,+∞]

D.

(-∞,-]∪[4,+∞)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列六个结论其中正确的序号是
.(填上所有正确结论的序号)
①已知ln2=a,ln3=b,则用含a,b的代数式表示为:log32=
b
a

②若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
③函数y=loga(x-2)+3,(a>0,a≠1)恒过定点(2,4);
④若(
1
2
)x-2≤1
,则{x|x≤2};
⑤若指数函数y=(a2-3a+1)ax,则a=3;
⑥若函数f(
x
)=x+1
,则f(x)=x2+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)与g(x)的定义域为R,有下列5个命题:
①若f(x-2)=f(2-x),则f(x)的图象自身关于直线y轴对称;
②y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
③函数y=f(x+2)与y=f(2-x)的图象关于y轴对称;
④f(x)为奇函数,且f(x)图象关于直线x=
12
对称,则f(x)周期为2;
⑤f(x)为偶函数,g(x)为奇函数,且g(x)=f(x-1),则f(x)周期为2.
其中正确命题的序号为
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f'(x)是f(x)的导数,记f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),给出下列四个结论:
①若f(x)=xn,则f(5)(1)=120;
②若f(x)=cosx,则f(4)(x)=f(x);
③若f(x)=ex,则f(n)(x)=f(x)(n∈N+);
④设f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定义域上的可导函数,h(x)=f(x)•g(x),则h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
则结论正确的是
①②③
①②③
(多填、少填、错填均得零分).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)已知函数y=f(x),任取t∈R,定义集合:At={y|y=f(x)},点P(t,f(t)),Q(x,f(x))满足|PQ|
2
.设Mt,mt分别表示集合At中元素的最大值和最小值,记h(t)=Mt-mt.则
(1)若函数f(x)=x,则h(1)=
2
2

(2)若函数f(x)=sin
π
2
x,则h(t)的最小正周期为
2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)与g(x)的定义域为R,有下列5个命题:
①若f(x-2)=f(2-x),则f(x)的图象自身关于直线y轴对称;
②y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
③函数y=f(x+2)与y=f(2-x)的图象关于y轴对称;
④f(x)为奇函数,且f(x)图象关于直线x=
1
2
对称,则f(x)周期为2;
⑤f(x)为偶函数,g(x)为奇函数,且g(x)=f(x-1),则f(x)周期为2.
其中正确命题的序号为______.

查看答案和解析>>

同步练习册答案