精英家教网 > 高中数学 > 题目详情
在△ABC中,cosA=
5
5
cosB=
10
10

(Ⅰ)求角C;
(Ⅱ)设AB=
2
,求AB边上的高.
分析:(Ⅰ)由cosA和cosB的值都大于0,得到A和B都为锐角,利用同角三角函数间的基本关系分别求出sinA和sinB的值,由A+B+C=π,得到C=π-(A+B),表示出cosC,代换后,利用诱导公式及两角和的余弦函数公式化简,再把各自的值代入即可求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数;
(Ⅱ)由AB,sinA及sinB的值,利用正弦定理求出AC的值,最后利用锐角三角函数的定义,在直角三角形中,表示出sinA等于AB边上的高比上AC,即可得到高等于ACsinA,即可求出高的值.
解答:解:(Ⅰ)由cosA=
5
5
cosB=
10
10
,得A、B∈(0,
π
2
)

所以sinA=
2
5
5
,sinB=
3
10
10
.(3分)
因为cosC=cos[π-(A+B)]=-cos(A+B)=-cosAcosB+sinAsinB=
2
2
,(6分)
且0<C<π,故C=
π
4
.(7分)
(Ⅱ)∵AB=
2
,sinC=
2
2
,sinB=
3
10
10

根据正弦定理得
AB
sinC
=
AC
sinB
⇒AC=
AB•sinB
sinC
=
6
10
=
3
10
5
,(10分)
所以AB边上的高为AC•sinA=
6
2
5
.(12分)
点评:此题考查了同角三角函数的基本关系,正弦定理,诱导公式及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键,做题时注意角度的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、在△ABC中,cos(A-B)+sin(A+B)=2,则△ABC的形状为
等腰直角
三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

3、在△ABC中,cos 2B>cos 2A是A>B的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,cos(A+C)=-
3
5
,且a,c的等比中项为
35

(1)求△ABC的面积;
(2)若a=7,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,cos(A-C)+2cos2
B
2
=
5
2
,三边a,b,c成等比数列,求B.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,cos∠ABC=
1
3
,AB=6,AD=2DC,点D在AC边上.
(Ⅰ)若BC=AC,求sin∠ADB;
(Ⅱ)若BD=4
3
,求BC的长.

查看答案和解析>>

同步练习册答案