精英家教网 > 高中数学 > 题目详情
≤x≤,不等式m+tan(-2x)≤0恒成立,求实数m的取值范围.

解:由题意可知--2x≤0,

∴-≤tan(-2x)≤0.

∴m-≤m+tan(-2x)≤m.

∴m≤0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=alnx-bx2(x>0);
(1)若函数f(x)在x=1处与直线y=-
1
2
相切
①求实数a,b的值;
②求函数f(x)在[
1
e
,e]
上的最大值.
(2)当b=0时,若不等式f(x)≥m+x对所有的a∈[0,
3
2
],x∈(1,e2]
都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),记an=3f(n),n∈N*
(1)求数列{an}的通项公式;
(2)设bn=
an
2n
,Tn=b1+b2+…bn,若Tn<m(m∈Z),求m的最小值;
(3)求使不等式(1+
1
a1
)(1+
1
a2
)(1+
1
a2
)
…(1+
1
an
)
p
2n+1
对一切n∈N*,均成立的最大实数p.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinxcosx-
3
cos2x+1
(x∈R).
(I)求f(x)的最小正周期;
(II)求f(x)在区间x∈[
π
4
π
2
]
上的最大值和最小值;
(III)若不等式[f(x)-m]2<4对任意x∈[
π
4
π
2
]
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(选修4-5 不等式选讲)
若任意实数x使m≥|x+2|-|5-x|恒成立,则实数m的取值范围是
[7,+∞)
[7,+∞)

B.(选修4-1 几何证明选讲)
如图:EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的度数是
99°
99°

C.(选修4-4坐标系与参数方程)
极坐标系下,直线ρcos(θ-
π
4
)=
2
与圆ρ=
2
的公共点个数是
1
1

查看答案和解析>>

同步练习册答案