精英家教网 > 高中数学 > 题目详情

过抛物线焦点的弦的中点的横坐标为4,则该弦长为        

 

【答案】

10

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),点P(m,n)为抛物线上任意一点,其中m≥0.
(1)判断抛物线与正比例函数的交点个数;
(2)定义:凡是与圆锥曲线有关的圆都称为该圆锥曲线的伴随圆,如抛物线的内切圆就是最常见的一种伴随圆.此外还有以焦点弦为直径的圆,以及以焦点弦为弦且过顶点的圆等.同类的伴随圆构成一个圆系,圆系中有无数多个圆.求证:抛物线内切圆系方程为:(x-p-m)2+y2=p2+2pm(其中m为参数且m≥0);
(3)请研究抛物线以焦点弦为直径的伴随圆,推导出其圆系方程,并写出一个关于它的正确命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1
有相同的焦点.
其中真命题的序号为
 
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009浙江理)(本题满分15分)已知椭圆的右顶点为,过的焦点且垂直长轴的弦长为

   (I)求椭圆的方程;

   (II)设点在抛物线上,在点

的切线与交于点.当线段的中点与的中

点的横坐标相等时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009浙江理)(本题满分15分)已知椭圆的右顶点为,过的焦点且垂直长轴的弦长为

   (I)求椭圆的方程;

   (II)设点在抛物线上,在点

的切线与交于点.当线段的中点与的中

点的横坐标相等时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009浙江理)(本题满分15分)已知椭圆的右顶点为,过的焦点且垂直长轴的弦长为

   (I)求椭圆的方程;

   (II)设点在抛物线上,在点

的切线与交于点.当线段的中点与的中

点的横坐标相等时,求的最小值.

查看答案和解析>>

同步练习册答案