精英家教网 > 高中数学 > 题目详情
f′(x)是定义域为R的函数f(x)的导函数,若f′(x)-f(x)<0,若a=e2012f(0)、b=e2011f(1)、c=e1000f(1012),则a,b,c的大小关系是   
【答案】分析:设g(x)=e2012-xf(x),则g′(x)=-e2012-x•f(x)-e2012-x•f′(x)=-e2012-x[f(x)-f′(x)],由f′(x)-f(x)<0,知g(x)=e2012-xf(x)是减函数,由此能比较a=e2012f(0)、b=e2011f(1)、c=e1000f(1012)的大小关系.
解答:解:设g(x)=e2012-xf(x),
则g′(x)=-e2012-x•f(x)-e2012-x•f′(x)
=-e2012-x[f(x)-f′(x)],
∵f′(x)-f(x)<0,
∴g′(x)=-e2012-x[f(x)-f′(x)]<0,
∴g(x)=e2012-xf(x)是减函数,
∵a=e2012f(0)、b=e2011f(1)、c=e1000f(1012),
∴a>b>c.
故答案为:a>b>c.
点评:本题考查利用导数研究函数的单调性,是基础题.解题时要认真审题,仔细解答,注意合理地构造函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列几个命题:
①若函数f(x)的定义域为R,则g(x)=f(x)+f(-x)一定是偶函数;
②若函数f(x)是定义域为R的奇函数,对于任意的x∈R都有f(x)+f(2-x)=0,则函数f(x)的图象关于直线x=1对称;
③已知x1,x2是函数f(x)定义域内的两个值,当x1<x2时,f(x1)>f(x2),则f(x)是减函数;
④设函数y=
1-x
+
x+3
的最大值和最小值分别为M和m,则M=
2
m

⑤若f(x)是定义域为R的奇函数,且f(x+2)也为奇函数,则f(x)是以4为周期的周期函数.
其中正确的命题序号是
①④⑤
①④⑤
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)是定义域为R的奇函数,且满足f(x-2)=-f(x)对一切x∈R恒成立,当x∈[0,1]时,f(x)=x3,给出下列四个命题.
①f(x)是以4为周期的周期函数;
②f(x)在[1,3]上解析式为f(x)=(2-x)3
③f(x)图象的对称轴有x=±1;
④函数f(x)在R上无最大值.
其中正确命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义域为[a-1,2a]的偶函数,则a=
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)是定义域为R的奇函数,且满足f(x-2)=-f(x)对一切x∈R恒成立,当-1≤x≤1时,f(x)=x3.则下列四个命题中正确的命题是(  )
①f(x)是以4为周期的周期函数;
②f(x)在[1,3]上的解析式为f(x)=(2-x)3
③f(x)的图象的对称轴中有x=±1;
④f(x)在(
3
2
,f(
3
2
))
处的切线方程为3x+4y=5.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的奇函数,且在(0,+∞)内有1003个零点,则f(x)的零点的个数为(  )

查看答案和解析>>

同步练习册答案