精英家教网 > 高中数学 > 题目详情
若函数f(x)=x3+3x对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x∈
(-2,
2
3
(-2,
2
3
分析:先利用定义、导数分别判断出函数的奇偶性、单调性,然后利用函数的性质可去掉不等式中的符号“f”,转化具体不等式,借助一次函数的性质可得x的不等式组,解出可得答案.
解答:解:∵f(-x)=(-x)3+3(-x)=-(x3+3x)=-f(x),
∴f(x)是奇函数,
又f'(x)=3x2+3>0,∴f(x)单调递增,
f(mx-2)+f(x)<0可化为f(mx-2)<-f(x)=f(-x),
由f(x)递增知mx-2<-x,即mx+x-2<0,
∴对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,等价于对任意的m∈[-2,2],mx+x-2<0恒成立,
-2x+x-2<0
2x+x-2<0
,解得-2<x<
2
3

故答案为:(-2,
2
3
).
点评:本题考查恒成立问题,考查函数的奇偶性、单调性的应用,考查转化思想,考查学生灵活运用知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x3+
1
x
,则
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3x-1,x∈[-1,l],则下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3mx2+nx+m2为奇函数,则实数m的值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3bx+b在区间(0,1)内有极小值,则b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值,最小值分别为M,m,则M+m=
-14
-14

查看答案和解析>>

同步练习册答案