精英家教网 > 高中数学 > 题目详情

已知向量.

(I)若,求COS(﹣x)的值;

(II)记,在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.

解:(1)

(6分)(2)∵(2a﹣c)cosB=bcosC

∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA

∵sinA>0

∴cosB=

∵B∈(0,π),

(12分) 

练习册系列答案
相关习题

科目:高中数学 来源:2009年山东省临沂市高考数学一模试卷(理科)(解析版) 题型:解答题

已知向量
(I)若,求COS(-x)的值;
(II)记,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012年江西省贵溪一中等五校高三(下)第一次联考数学试卷(理科)(解析版) 题型:解答题

已知向量
(I)若,求COS(-x)的值;
(II)记,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009年江苏省南通市启东中学高三5月考前辅导特训数学试卷(理科)(解析版) 题型:解答题

已知向量
(I)若,求COS(-x)的值;
(II)记,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年广东省中山一中高三第八次统测数学试卷(理科)(解析版) 题型:解答题

已知向量
(I)若,求COS(-x)的值;
(II)记,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省金华一中、慈溪中学、学军中学高三(下)联考数学试卷(理科)(解析版) 题型:解答题

已知向量
(I)若,求COS(-x)的值;
(II)记,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

同步练习册答案