精英家教网 > 高中数学 > 题目详情

如图,菱形ABCD所在平面与矩形ACEF所在平面相互垂直,点M是线段EF的中点。(1)求证:AM // 平面BDE(6分)  (2)当为何值时,平面DEF平面BEF?并证明你的结论。(8分)

(Ⅰ) 略   (Ⅱ)


解析:

证明(1)取AC与BD的交点N,连接EN, 1分

由题意知:EN // AM,      4分又EN在平面BDE内,  …5分

所以AM // 平面BDE   ……6分

(2)当时,平面DEF平面BEF……7分

因为面ACEF面ABCD,四边形ACEF为矩形,

所以FA、EC都垂直于面ABCD,又四边形ABCD是菱形,

所以FADECA,所以DF=DE又M为EF的中点,所以DMEF,………10分

当DMBM时,就有DM平面BEF  …12分

DMB=90时,平面DEF平面BEF ∴……14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•闸北区二模)如图,菱形ABCD中,AB=AC=1,其对角线的交点为O,现将△ADC沿对角线AC向上翻折,使得OD⊥OB.在四面体ABCD中,E在AB上移动,点F在DC上移动,且AE=CF=a(0≤a≤1).
(1)求线段EF的最大值与最小值;
(2)当线段EF的长最小时,求异面直线AC与EF所成角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,菱形ABCD中,∠A=60°,把菱形ABCD沿对角线BD折成二面角A-BD-C,AC=BD,空间中的点P满足PA、PB、PC两两垂直,则下列命题中错误的是(  )

查看答案和解析>>

科目:高中数学 来源:2012年云南省昆明市高三复习适应性检测数学试卷(理科)(解析版) 题型:选择题

如图,菱形ABCD中,∠A=60°,把菱形ABCD沿对角线BD折成二面角A-BD-C,AC=BD,空间中的点P满足PA、PB、PC两两垂直,则下列命题中错误的是( )

A.二面角A-BD-C的余弦值为
B.PC∥平面ABD
C.PB与CD所成角为45°
D.PB⊥BD

查看答案和解析>>

科目:高中数学 来源:2012年上海市高考数学压轴试卷(理科)(解析版) 题型:解答题

如图,菱形ABCD中,AB=AC=1,其对角线的交点为O,现将△ADC沿对角线AC向上翻折,使得OD⊥OB.在四面体ABCD中,E在AB上移动,点F在DC上移动,且AE=CF=a(0≤a≤1).
(1)求线段EF的最大值与最小值;
(2)当线段EF的长最小时,求异面直线AC与EF所成角θ的大小.

查看答案和解析>>

科目:高中数学 来源:2012年上海市闸北区高考数学二模试卷(理科)(解析版) 题型:解答题

如图,菱形ABCD中,AB=AC=1,其对角线的交点为O,现将△ADC沿对角线AC向上翻折,使得OD⊥OB.在四面体ABCD中,E在AB上移动,点F在DC上移动,且AE=CF=a(0≤a≤1).
(1)求线段EF的最大值与最小值;
(2)当线段EF的长最小时,求异面直线AC与EF所成角θ的大小.

查看答案和解析>>

同步练习册答案