精英家教网 > 高中数学 > 题目详情
f(x)=
x+2
2
+2sin(x+
π
4
)
2+cosx
在[-2,2]上的最大值与最小值之和为
2
2
2
2
分析:用常数分离法化简函数的解析式为f(x)=
2
+
x+
2
sinx
2+cosx
,令 g(x)=
x+
2
sinx
2+cosx
,则有f(x)=
2
+g(x),可得f(x)的最大值与最小值的和等于2
2
加上g(x)的最大值与最小值.根据函数 g(x)为奇函数,可得 g(x)的最大值与最小值的和等于零,由此求得f(x) 的最大值与最小值之和.
解答:解:∵f(x)=
x+2
2
+2sin(x+
π
4
)
2+cosx
=
x+2
2
+2•sinx•cos
π
4
+2cosx•sin
π
4
2+cosx

=
x+2
2
+
2
sinx+
2
cosx
2+cosx
=
2
+
x+
2
sinx
2+cosx

令 g(x)=
x+
2
sinx
2+cosx
,则有f(x)=
2
+g(x),故f(x)的最大值与最小值的和等于2
2
加上g(x)的最大值与最小值.
由于函数 g(x)为奇函数,故 g(x)的最大值与最小值的和等于零,
故f(x)的最大值与最小值的和等于2
2

故答案为 2
2
点评:本题主要考查用常数分离法化简函数的解析式,利用函数的奇偶性求函数的值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学探究函数f(x)=x+
4
x
(x>0)的最小值,并确定相应的x的值.先列表如下:
x
1
4
1
2
1
3
2
2
8
3
4 8 16
y 16.25 8.5 5
25
6
4
25
6
5 8.5 16.25
请观察表中y值随x值变化的特点,完成下列问题:((1)(2)问的填空只要写出结果即可)
(1)若x1x2=4,则 f(x1
=
=
f(x2).(请填写“>,=,<”号);若函数f(x)=x+
4
x
(x>0)在区间 (0,2)上递减,则f(x)在区间
(2,+∞)
(2,+∞)
  上递增;
(2)当x=
2
2
时,f(x)=x+
4
x
(x>0)的最小值为
4
4

(3)根据函数f(x)的有关性质,你能得到函数f(x)=x+
4
x
(x<0)的最大值吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)
的最小值,并确定取得最小值时x的值.
列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 5.8 7.57
请观察表中y值随x值变化的特点,完成以下的问题.
函数f(x)=x+
4
x
(x>0)
在区间(0,2)上递减;
函数f(x)=x+
4
x
(x>0)
在区间
(2,+∞)
(2,+∞)
上递增.
当x=
2
2
时,y最小=
4
4

证明:函数f(x)=x+
4
x
(x>0)
在区间(0,2)递减.
思考:
(1)函数f(x)=x+
4
x
(x<0)
时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
(2)函数f(x)=x+
k
x
(x>0,k>0)时有最值吗?
是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列表格,探究函数f(x)=x+
4
x
,x∈(0,+∞)
的性质,
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
(1)请观察表中y值随x值变化的特点,完成以下的问题.
函数f(x)=x+
4
x
(x>0)
在区间(0,2)上递减;
函数f(x)=x+
4
x
(x>0)
在区间
(2,+∞)
(2,+∞)
上递增.
当x=
2
2
时,y最小=
4
4

(2)证明:函数f(x)=x+
4
x
在区间(0,2)递减.
(3)函数f(x)=x+
4
x
(x<0)
时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案