精英家教网 > 高中数学 > 题目详情
1.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一条渐近线方程为y=-2x,则a的值为(  )
A.8B.4C.2D.1

分析 根据双曲线的方程求得渐近线方程为y=±$\frac{2}{a}$x,即可求出a的值,

解答 解:∵双曲线的渐近线方程为 y=±$\frac{2}{a}$x,
又已知一条渐近线方程为y=-2x,∴-$\frac{2}{a}$=-2,a=1,
故选:D

点评 本题考查双曲线的标准方程,以及双曲线的简单性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.函数f(x)=loga(x-3a)与函数$g(x)={log_a}\frac{1}{x-a}$(a>0,且a≠1)在给定区间[a+2,a+3]上有意义.
(1)求a的取值范围;
(2)若在给定区间[a+2,a+3]上恒有|f(x)-g(x)|≤1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x(x-m)2在x=1处取得极小值,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的有(  )
(1)m?α,n?α,m∥β,n∥β⇒α∥β  (2)n∥m,n⊥α⇒m⊥α
(3)α∥β,m?α,n?β⇒m∥n         (4)m⊥α,m⊥n⇒n∥α
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),则$\overrightarrow{a}$+$\overrightarrow{b}$的坐标为(  )
A.(1,5)B.(1,1)C.(3,1)D.(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将一枚硬币先后抛掷两次,恰好出现一次正面的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=(x2-4)(x-a),a为实数,f′(1)=0,则f(x)在[-2,2]上的最大值是(  )
A.$\frac{9}{2}$B.1C.$\frac{3}{5}$D.$\frac{50}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知sinα=$\frac{1}{4}$,则cos2α的值为(  )
A.-$\frac{7}{8}$B.$\frac{7}{8}$C.$\frac{1}{2}$D.$\frac{15}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|2x-1|.
(1)求不等式f(x)<4的解集;
(2)若函数g(x)=f(x)+f(x-1)的最小值为a,且m+n=a(m>0,n>0),求$\frac{2}{m}+\frac{1}{n}$的取值范围.

查看答案和解析>>

同步练习册答案