精英家教网 > 高中数学 > 题目详情
2.一种饮料每箱装有6听,经检测,某箱中每听的容量(单位:ml)如以下茎叶图所示.
(Ⅰ)求这箱饮料的平均容量和容量的中位数;
(Ⅱ)如果从这箱饮料中随机取出2听饮用,求取到的2听饮料中至少有1听的容量为250ml的概率.

分析 (Ⅰ)由茎叶图,能示出这箱饮料的平均容量的容量的中位数.
(Ⅱ)把每听饮料标上号码,其中容量为248ml,249ml的4听分别记作1,2,3,4,容量炎250ml的2听分别记作:a,b.抽取2听饮料,得到的两个标记分别记为x和y,则{x,y}表示一次抽取的结果,由此利用列举法能求出从这箱饮料中随机取出2听饮用,取到的2听饮料中至少有1听的容量为250ml的概率.

解答 解:(Ⅰ)由茎叶图知,这箱饮料的平均容量为249+$\frac{-1-1+0+0+1+1}{6}$=249,
容量的中位数为$\frac{249+249}{2}$=249.
(Ⅱ)把每听饮料标上号码,其中容量为248ml,249ml的4听分别记作1,2,3,4,
容量炎250ml的2听分别记作:a,b.抽取2听饮料,
得到的两个标记分别记为x和y,则{x,y}表示一次抽取的结果,
即基本事件,从这6听饮料中随机抽取2听的所有可能结果有:
$\begin{array}{l}\left\{{1,2}\right\},\left\{{1,3}\right\},\left\{{1,4}\right\},\left\{{1,a}\right\},\left\{{1,b}\right\}\\ \left\{{2,3}\right\},\left\{{2,4}\right\},\left\{{2,a}\right\},\left\{{2,b}\right\}\\ \left\{{3,4}\right\},\left\{{3,a}\right\},\left\{{3,b}\right\}\\ \left\{{4,a}\right\},\left\{{4,b}\right\}\\ \left\{{a,b}\right\}\end{array}$
共计15种,即事件总数为15.
其中含有a或b的抽取结果恰有9种,即“随机取出2听饮用,
取到的2听饮料中至少有1听的容量为250ml”的基本事件个数为9.
所以从这箱饮料中随机取出2听饮用,取到的2听饮料中至少有1听的容量为250ml的概率为$\frac{9}{15}=0.6$.…(12分)

点评 本题主要考查随机事件的概率、古典概型等概念及相关计算,考查运用概率知识与方法分析和解决实际问题的能力,考查推理论证能力、应用意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.命题p:?x∈R,函数$f(x)=2{cos^2}x+\sqrt{3}sin2x≤3$的否定为?x0∈R,函数f(x0)=2cos2x0+$\sqrt{3}$sin2x0>3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$a={(\frac{1}{3})^{\frac{1}{2}}},b={log_{\frac{1}{2}}}\frac{1}{3},c={log_3}\frac{1}{2}$则(  )
A.C>b>aB.b>c>aC.b>a>cD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是公差为2的等差数列,数列{bn}满足${b_1}=1,{b_2}=\frac{1}{2}$,若n∈N*时,anbn+1-bn+1=nbn
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设cn=anbn,求{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,输出S的值为(  )
A.45B.55C.66D.110

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a,b∈R,函数$f(x)=\frac{1}{3}{x^3}+a{x^2}+bx+1$,g(x)=ex(e为自然对数的底数),且函数f(x)的图象与函数g(x)的图象在x=0处有公共的切线.
(Ⅰ)求b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)证明:当$a≤\frac{1}{2}$时,g(x)>f(x)在区间(-∞,0)内恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={1,2,3},B={2,3},则(  )
A.A∩B=∅B.AB=BC.A⊆BD.B$\begin{array}{l}?\\≠\end{array}$A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=4.
(1)若l的参数方程中的$t=-\sqrt{2}$时,得到M点,求M的极坐标和曲线C直角坐标方程;
(2)若点P(0,2),l和曲线C交于A,B两点,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设x∈R,则“x<-2”是“x2+x≥0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案