精英家教网 > 高中数学 > 题目详情

已知抛物线y=4ax2(a>0)上的点A(x0,2)到焦点的距离等于3,则a=________.


分析:根据抛物线的定义得到,点A到准线的距离为2+=3,求得a即可.
解答:当a>0时,开口向上,准线方程为y=-
根据地抛物线的定义得:点A到准线的距离为2+=3,
求得a=
故答案为:
点评:本题主要考查了抛物线的性质,本题主要考查抛物线的标准方程,考查了对抛物线基础知识的理解和应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a
-
y2
3
=1的一条渐近线方程为y=
3
x,则抛物线y2=4ax上一点M(2,y0)到该抛物线焦点F的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(-1,0);
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;
(3)E是第二象限内到x轴、y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2+4ax-4a+3,y=x2+2ax-2a至少有一条与x轴相交,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044

已知抛物线y=x2+4ax-4a+3,y=x2+(a-1)x+a2,y=x2+2ax-2a中至少有一条与x轴相交,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线y=x2+4ax-4a+3,y=x2+2ax-2a至少有一条与x轴相交,求实数a的取值范围.

查看答案和解析>>

同步练习册答案