精英家教网 > 高中数学 > 题目详情
(2013•青岛一模)已知函数f(x)=
x,x≤0
x2-x,x>0
,若函数g(x)=f(x)-m有三个不同的零点,则实数m的取值范围为(  )
分析:原问题等价于函数y=f(x)与y=m的图象有三个不同的交点,作出函数的图象,数形结合可得答案.
解答:解:函数g(x)=f(x)-m有三个不同的零点,
等价于函数y=f(x)与y=m的图象有三个不同的交点,
作出函数f(x)的图象如图:

由二次函数的知识可知,当x=
1
2
时,抛物线取最低点为-
1
4

函数y=m的图象为水平的直线,由图象可知当m∈(-
1
4
,0)时,
两函数的图象有三个不同的交点,即原函数有三个不同的零点,
故选C
点评:本题考查函数的零点,转化为两函数图象的交点是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)下列函数中周期为π且为偶函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)“k=
2
”是“直线x-y+k=0与圆“x2+y2=1相切”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)函数y=21-x的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知x,y满足约束条件
x2+y2≤4
x-y+2≥0
y≥0
,则目标函数z=-2x+y的最大值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足:△ABC的周长为2+2
2
,记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)曲线W上是否存在这样的点P:它到直线x=-1的距离恰好等于它到点B的距离?若存在,求出点P的坐标;若不存在,请说明理由;
(Ⅲ)设E曲线W上的一动点,M(0,m),(m>0),求E和M两点之间的最大距离.

查看答案和解析>>

同步练习册答案