精英家教网 > 高中数学 > 题目详情
图2-5-3所示是并列的三个大小相同的正方形,求证:∠1+∠2+∠3=90°.

图2-5-3

证明:以O为坐标原点,OC、OG所在的直线为x、y轴建系如上图,设正方形边长为1,则=(3,1),=(2,1),作向量=(3,-1),则的夹角等于∠2+∠3.

∵||=5,| |=10, ·=2×3+1×(-1)=5,

∴cos〈,〉=.

∵〈,〉∈[0°,180°],

∴〈,〉=45°,即∠2+∠3=45°.

∵∠1=45°,∴∠1+∠2+∠3=90°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某高校在2012年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(1)求出第4组的频率,并补全频率分布直方图;
(2)根据样本频率分布直方图估计样本的中位数;
(3)如果用分层抽样的方法从“优秀”和“良好”的学生中选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校在2012年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(1)求出第4组的频率,并补全频率分布直方图;
(2)如果用分层抽样的方法从“优秀”和“良好”的学生中选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
(3)若该校决定在第4,5 组中随机抽取2名学生接受考官A的面试,第5组中有ξ名学生被考官A面试,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

“世界睡眠日”定在每年的3月21日,2009年的世界睡眠日主题是“科学管理睡眠”.为提高公众对健康睡眠的科学认识和自我管理能力,某网站于3月13日起进行了为期一周的在线调查,共有200人参与.现将数据整理分组如表所示.
(1)画出频率分布直方图;
(2)调查对象中睡眠时间少于8的频率是多少?
(3)为了对数据进行分析,采用了计算机辅助计算,算法流程如图所示.求输出的S的值,并说明S的统计意义.
序号i 分组睡眠时间(小时) 组中值(m1 频数(人数) 频率(f1
1 [4,5) 4.5 8 0.04
2 [5,6) 5.5 52 0.26
3 [6,7) 6.5 60 0.30
4 [7,8) 7.5 56 0.28
5 [8,9) 8.5 20 0.10
6 [9,10) 9.5 4 0.02

查看答案和解析>>

科目:高中数学 来源: 题型:

杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图所示是一个11阶杨辉三角:

(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14与第15个数的比为
23
,求n的值;
(3)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m,k(m,k∈N*)的数学公式表示上述结论,并给予证明.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

2008年北京奥运会中国跳水梦之队取得了辉煌的成绩.据科学测算,跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动轨迹(如下图所示)是一条经过坐标原点的抛物线(图中标出数字为已知条件),且在跳某个规定的翻腾动作时,正常情况下运动员在空中的最高点距水面米,入水处距池边4米,同时运动员在距水面5米或5米以上时,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.
(1)求这个抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动轨迹为(1)中的抛物线,且运动员在空中调整好入水姿势时距池边的水平距离为米,问此次跳水会不会失误?请通过计算说明理由;
(3)某运动员按(1)中抛物线运行,要使得此次跳水成功,他在空中调整好入水姿势时,距池边的水平距离至多应为多大?

查看答案和解析>>

同步练习册答案