解:(1)g(x)≥f(x)-|x-1|
-x2+2x≥x2+2x-|x-1|
-2x2+|x-1|≥0,![]()
或
,
解得:x∈[-1,
]。
(2)h(x)=g(x)-λf(x)+1=-x2+2x-λ(x2+2x)+1=-(λ+1)x2+2(1-λ)x+1,在[-1,1]单调递增,
①λ+1=0,∴λ=-1时,h(x)=4x+1单调递增;
②λ+1≠0时,对轴称
,
![]()
,解得:λ<-1
或![]()
![]()
,解得:-1<λ≤0,
∴λ≤0。
(3)g(x)=-x2+2x≤m2-2mp+1,对
x∈R,p∈[-1,1]恒成立
m2-2mp+1≥(-x2+2x)max=-((x-1)2+1)max=1
m2-2mp≥0,
令f(p)=-2mp+m2,
则
或
,
∴
。
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| x |
| a |
| b |
| x |
| 4c2 |
| k(k+c) |
查看答案和解析>>
科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022
已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.
查看答案和解析>>
科目:高中数学 来源:上海模拟 题型:解答题
| x |
| a |
| b |
| x |
| 4c2 |
| k(k+c) |
查看答案和解析>>
科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com