精英家教网 > 高中数学 > 题目详情

定义在R上的偶函数f(x),?x∈R,恒有f(x+数学公式)=-f(x),f(-1)=1.f(0)=-2,则f(1)+f(2)+f(3)+…+f(2012)=


  1. A.
    -2
  2. B.
    -1
  3. C.
    1
  4. D.
    2
D
分析:由f(x)=-f(x+)=-〔-f(x+3)〕=f(x+3),知函数y=f(x)周期为3.所以f(1)=f(-1)=1,f(2)=f(-1)=1,f(3)=f(0)=-22,…,2012=3×670+2,由此能求出f(1)+f(2)+…+f(2012).
解答:∵f(x)=-f(x+)=-〔-f(x+3)〕=f(x+3),
∴函数y=f(x)周期为3
所以f(1)=f(-1)=1
f(2)=f(-1)=1
f(3)=f(0)=-2

2012=3×670+2
所以f(1)+f(2)+…+f(2012)=0+f(1)+f(2)=1+1=2.
故选D.
点评:本题考查函数的周期性,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)是最小正周期为π的周期函数,且当x∈[0,
π
2
]
时,f(x)=sinx,则f(
3
)
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、定义在R上的偶函数f(x),当x≥0时有f(2+x)=f(x),且x∈[0,2)时,f(x)=2x-1,则f(2010)+f(-2011)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x),满足f(x+2)=f(x),且f(x)在[-3,-2]上是减函数,若α、β是锐角三角形中两个不相等的锐角,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:
①f(x)是周期函数;
②f(x)的图象关于x=l对称;
③f(x)在[l,2l上是减函数;
④f(2)=f(0),
其中正确命题的序号是
①②④
①②④
.(请把正确命题的序号全部写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在R上的偶函数f(x).当x≥0时,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函数f(x)的解析式并画出函数的图象;
(Ⅱ)写出函数f(x)的值域.

查看答案和解析>>

同步练习册答案