精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.

(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;

(2)当a=3,b=﹣9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.

考点:

利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.

专题:

综合题.

分析:

(1)根据曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,故可求a、b的值;

(2)当a=3,b=﹣9时,设h(x)=f(x)+g(x)=x3+3x2﹣9x+1,求导函数,确定函数的极值点,进而可得k≤﹣3时,函数h(x)在区间[k,2]上的最大值为h(﹣3)=28;﹣3<k<2时,函数h(x)在在区间[k,2]上的最大值小于28,由此可得结论.

解答:

解:(1)f(x)=ax2+1(a>0),则f'(x)=2ax,k1=2a,g(x)=x3+bx,则g'(x)=3x2+b,k2=3+b,

由(1,c)为公共切点,可得:2a=3+b  ①

又f(1)=a+1,g(1)=1+b,

∴a+1=1+b,即a=b,代入①式可得:a=3,b=3.

(2)当a=3,b=﹣9时,设h(x)=f(x)+g(x)=x3+3x2﹣9x+1

则h′(x)=3x2+6x﹣9,令h'(x)=0,解得:x1=﹣3,x2=1;

∴k≤﹣3时,函数h(x)在(﹣∞,﹣3)上单调增,在(﹣3,2]上单调减,所以在区间[k,2]上的最大值为h(﹣3)=28

﹣3<k<2时,函数h(x)在在区间[k,2]上的最大值小于28

所以k的取值范围是(﹣∞,﹣3]

点评:

本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,解题的关键是正确求出导函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案