精英家教网 > 高中数学 > 题目详情
2、在△ABC 中,“B=60°”是“A,B,C 成等差数列”的
充要
条件(指充分性和必要性).
分析:结合三角形的内角和定理,我们先判断,“B=60°”?“A,B,C 成等差数列”的真假,再判断“A,B,C 成等差数列”?“B=60°”的真假,然后根据充要条件的定义即可得到结论.
解答:解:若“B=60°”,由三角形内角和为180°
我们易得A+C=120°=2B
即“A,B,C 成等差数列”
若“A,B,C 成等差数列”,则A+C=2B
则A+B+C=3B=180°
∴“B=60°”
故B=60°”是“A,B,C 成等差数列”的充要条件
故答案为:充要
点评:判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠B=90°,AC=
15
2
,D,E两点分别在AB,AC上.使
AD
DB
=
AE
EC
=2,DE=3.将△ABC沿DE折成直二面角,则二面角A-EC-B的余弦值为(  )
A、
3
22
22
B、
5
22
22
C、
3
34
34
D、
5
34
34

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠B=120°,AB=2
3
,AC=6,则∠C为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列五个命题:
①“若x+y=0,则x,y互为相反数”的逆命题.
②在平面内,F1、F2是定点,丨F1F2丨=6,动点M满足丨MF1丨-丨MF2丨=4,则点M的轨迹是双曲线.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件.
④“若-3<m<5,则方程
x2
5-m
+
y2
m+3
=1是椭圆”.
⑤已知向量
a
b
c
是空间的一个基底,则向量
a
+
b
a
-
b
c
也是空间的一个基底.
⑥椭圆
x2
25
+
y2
9
=1上一点P到一个焦点的距离为5,则P到另一个焦点的距离为5.
其中真命题的序号是
①③⑤⑥
①③⑤⑥

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠B=
π
3
,三边长a,b,c成等差数列,且a,
6
,c成等比数列,则b的值是(  )
A、
2
B、
3
C、
5
D、
6

查看答案和解析>>

同步练习册答案