精英家教网 > 高中数学 > 题目详情

对定义域内的任意x1、x2都有f(x1·x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1.

(1)求证:f(x)是偶函数;

(2)求证:f(x)在(0,+∞)上是增函数;

(3)解不等式f(2x2-1)<2.

答案:
解析:

  (1)(2)略;

  (3)(-).


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1、x2,都有f(x1•x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1,
(1)求证:f(x)是偶函数;
(2)证明f(x)在(0,+∞)上是增函数;

查看答案和解析>>

科目:高中数学 来源: 题型:

22、已知函数f(x)定义域为{x|x≠0,x∈R},对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2)且当x>1时f(x)>0,
(1)求f(1)与f(-1)值;
(2)求证:f(x)是偶函数;
(3)求证:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1.
(1)求证:f(x)是偶函数;
(2)f(x)在(0,+∞)上是增函数;
(3)解不等式f(2x2-1)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在其定义域内满足“对定义域内的任意x1,x2,当x1<x2时,都有f(x1)>f(x2)”的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)定义域为{x|x≠0,x∈R},对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2)且当x>1时f(x)>0,
(1)求f(1)与f(-1)值;
(2)求证:f(x)是偶函数;
(3)求证:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

同步练习册答案