精英家教网 > 高中数学 > 题目详情
若椭圆 的一个焦点是(-2,0),则a等于(   )
                 
解析:从椭圆的标准方程切入,由题设知,所给方程为椭圆第一标准方程: 
  ∴这里有  
  于是可得 ,应选B
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A(-7,0)、B(7,0)、C(2,-12),若椭圆的一个焦点为C,且过A、B两点,则此椭圆的另一焦点的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年福建卷理)(本小题满分12分)

   如图,椭圆的一个焦点是O为坐标原点.

   (Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角 

形,求椭圆的方程;

    (Ⅱ)设过点F的直线l交椭圆于AB两点.若直线l绕点F

任意转动,恒有,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省高三第二次模拟考试理科数学试卷(解析版) 题型:解答题

(本题满分12分)给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

(Ⅰ)求椭圆的方程和其“准圆”方程.

(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭圆都只有一个交点,且分别交其“准圆”于点,求证:为定值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省潍坊市高三2月月考理科数学 题型:解答题

(本小题满分12分)

给定椭圆,称圆心在原点,半径为的圆是

椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距

离为.

(Ⅰ)求椭圆的方程和其“准圆”方程.

(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭

都只有一个交点,且分别交其“准圆”于点

(1)当为“准圆”与轴正半轴的交点时,求的方程.

(2)求证:为定值.

 

 

查看答案和解析>>

同步练习册答案