精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c且c=
3
,f(C)=0,若sinB=2sinA,求a,b的值.
(1)f(x)=
3
2
sin2x-cos2x-
1
2

=
3
2
sin2x-
1+cos2x
2
-
1
2

=
3
2
sin2x-
1
2
cos2x-1=sin(2x-
π
6
)-1,
∵-1≤sin(2x-
π
6
)-≤1,
∴f(x)的最小值为-2,
又ω=2,
则最小正周期是T=
2
=π;
(2)由f(C)=sin(2C-
π
6
)-1=0,得到sin(2C-
π
6
)=1,
∵0<C<π,∴-
π
6
<2C-
π
6
11π
6

∴2C-
π
6
=
π
2
,即C=
π
3

∵sinB=2sinA,∴由正弦定理得b=2a①,又c=
3

∴由余弦定理,得c2=a2+b2-2abcos
π
3
,即a2+b2-ab=3②,
联立①②解得:a=1,b=2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案