精英家教网 > 高中数学 > 题目详情

函数的的定义域是(     )

A.          B.          C.          D.

 

【答案】

C

【解析】

试题分析:要使得原式有意义,则需要满足

故可知定义域为,选C.

考点:函数定义域

点评:根据对数的真数大于零来分析得到定义域,属于基础题。一般都能得分。

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年新疆乌鲁木齐市高三(上)期末数学试卷(解析版) 题型:选择题

对于任意实数x,符号[x]表示不超过x的最大整数,例如[-1.5]=-2,[2.5]=2,定义函数{x}=x-[x],则给出下列四个命题:①函数{x}的定义域是R,值域为[0,1];②方程{x}=有无数个解;③函数{x}是周期函数;④函数{x}是增函数.其中正确的序号是( )
A.①③
B.②④
C.①④
D.②③

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省高三第一次月考文科数学试卷(解析版) 题型:填空题

设函数的定义域为,若存在非零实数使得对于任意,有,且,则称上的“高调函数”.现给出下列命题:

①函数上的“1高调函数”;

②函数上的“高调函数”;

③如果定义域为的函数上“高调函数”,那么实数的取值范围是

其中正确的命题是        .(写出所有正确命题的序号)

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:填空题

设函数的定义域为,若存在非零实数使得对于任意,有,且,则称上的“高调函数”.现给出下列命题:

①函数上的“1高调函数”;

②函数上的“高调函数”;

③如果定义域为的函数上“高调函数”,那么实数的取值范围是

其中正确的命题是                            .(写出所有正确命题的序号)

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考文科数学试卷(解析版) 题型:填空题

设函数的定义域为,若存在非零实数使得对于任意,有,且,则称上的“高调函数”.现给出下列命题:

①函数上的“1高调函数”;

②函数上的“高调函数”;

③如果定义域为的函数上“高调函数”,那么实数的取值范围是

其中正确的命题是                  .(写出所有正确命题的序号)

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省、临川一中高三8月联考文科数学试卷(解析版) 题型:填空题

设函数的定义域为,若存在非零实数使得对于任意,有,且,则称上的“高调函数”.现给出下列命题:

①函数上的“1高调函数”;

②函数上的“高调函数”;

③如果定义域为的函数上“高调函数”,那么实数的取值范围是

其中正确的命题是        .(写出所有正确命题的序号)

 

查看答案和解析>>

同步练习册答案