精英家教网 > 高中数学 > 题目详情

已知点M是圆x2+y2-4x=0上的一个动点,点N(2,6)为定点,当点M在圆上运动时,求线段MN的中点P的轨迹方程,并说明轨迹的图形.

答案:
解析:

  解:将已知圆的方程化为:

  则其参数方程为故可设点M(2+2cos,2sin)

  又∵点N(2,6).∴MN的中点P为

  ∴点P的轨迹方程为:

  它表示圆心在(2,3),半径为1的圆.


提示:

先将圆化为利用圆的参数方程求解.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上一动点,点P在y轴上的射影为Q,设满足条件
QM
QP
(λ为非零常数)的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)若存在过点N(
1
2
,0)
的直线l与曲线C相交于A、B两点,且
OA
OB
=0(O为坐标原点),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件
QM
=2
QP
的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上任意一点,过点P作y轴的垂线,垂足为Q,点R满足
RQ
=
3
PQ
,记点R的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A(0,1),点M、N在曲线C上,且直线AM与直线AN的斜率之积为
2
3
,求△AMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(t,t),t∈R,点M是圆x2+(y-1)2=
1
4
上的动点,点N是圆(x-2)2+y2=
1
4
上的动点,则|PN|-|PM|的最大值是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(t,t),t∈R,点M是圆x2+(y-1)2=上的动点,点 N是圆(x-2)2+y2=上的动点,则|PN|-|PM|的最大值是(    )

A.-1           B.                 C.1                    D.2

查看答案和解析>>

同步练习册答案