精英家教网 > 高中数学 > 题目详情
如图(甲),在直角梯形ABED中,AB∥DE,AB⊥BE,AB⊥CD,且BC=CD,AB=2,F、H、G分别为AC,AD,DE的中点,现将△ACD沿CD折起,使平面ACD⊥平面CBED,如图(乙).
(1)求证:平面FHG∥平面ABE;
(2)记BC=x,V(x)表示三棱锥B-ACE的体积,求V(x)的最大值;
(3)当V(x)取得最大值时,求二面角D-AB-C的余弦值.Pn(xn,yn
分析:(1)欲证平面FHG∥平面ABE,只需证明线面平行,故只需要在平面FHG中寻找两条相交直线与平面平行;
(2)由于平面ACD⊥平面CBED 且AC⊥CD,所以AC⊥平面CBED,故可表示三棱锥B-ACE的体积,利用基本不等式求最值,注意等号成立的条件;
(3)求解二面角D-AB-C的余弦值,建立空间直角坐标系,利用向量法求解,分别求出平面ACB的法向量,平面ABD的法向量,利用cosθ=
m
CD
|
m
|•|
CD|
可以求解
解答:解:(1)证明:由图(甲)结合已知条件知四边形CBED为正方形
如图(乙)∵F、H、G分别为AC,AD,DE的中点
∴FH∥CD,HG∥AE--------------------------------------(1分)
∵CD∥BE∴FH∥BE
∵BE?面ABE,FH?面ABE
∴FH∥面ABE-------------------------------------(3分)
同理可得HG∥面ABE
又∵FH∩HG=H
∴平面FHG∥平面ABE-----------------(4分)
(2)∵平面ACD⊥平面CBED 且AC⊥CD
∴AC⊥平面CBED----------------------------------------------------(5分)
∴V(x)=VA-BCE=
1
3
S△BCE•AC

∵BC=x∴AC=2-x(0<x<2)
∴V(x)=
1
3
×
1
2
x2(2-x)=
1
6
x2(2-x)
=
1
12
x•x•(4-2x)
--------------(7分)
x•x•(4-2x)≤(
x+x+4-2x
3
)3=
64
27

∴V(x)
1
12
×
64
27
=
16
81

当且仅当x=4-2x即x=
4
3
时取“=”
∴V(x)的最大值为
16
81
-------------------------------------------(9分)
(3)以点C为坐标原点,CB为x轴建立空间直角坐标系
如右图示:由(2)知当V(x)取得最大值时x=
4
3
,即BC=
4
3

这时AC=
2
3
,∴B(
4
3
,0,0)
D(0,
4
3
,0)
A(0,0,
2
3
)
-----(10分)
∴平面ACB的法向量
CD
=(0,
4
3
,0)

设平面ABD的法向量为
m
=(a,b,c)

AB
=(
4
3
,0,-
2
3
)
BD
=(-
4
3
4
3
,0)
-------------(11分)
m
AB
m
BD
-
4
3
a+
4
3
b=0
4
3
a-
2
3
c=0

令c=1得
m
=(
1
2
1
2
,1)
----------------------------------------(12分)
设二面角D-AB-C为θ,则cosθ=
m
CD
|
m
|•|
CD|
=
2
3
4
3
1
4
+
1
4
+1
=
6
6
---(14分)
点评:本题的考点是面面平行的判断,主要考查证明面面平行,考查几何体的体积,考查二面角的平面角,关键是正确运用面面平行的判定,利用向量法求面面角,关键是求出相应的法向量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图(甲),在直角梯形ABED中,AB∥DE,AB⊥BE,AB⊥CD,且BC=CD,AB=2,F、H、G分别为AC,AD,DE的中点,现将△ACD沿CD折起,使平面ACD⊥平面CBED,如图(乙).
(1)求证:平面FHG∥平面ABE;
(2)记BC=xV(x)表示三棱锥B-ACE的体积,求V(x)的最大值.

查看答案和解析>>

科目:高中数学 来源:2013届江西省高三10月月考理科数学试卷(解析版) 题型:解答题

(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).

(1)求证:平面FHG//平面ABE;

(2)记表示三棱锥B-ACE 的体积,求的最大值;

(3)当取得最大值时,求二面角D-AB-C的余弦值.

 

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省高三第二次(10月)月考理科数学试卷(解析版) 题型:解答题

(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).

(1)求证:平面FHG//平面ABE;

(2)记表示三棱锥B-ACE 的体积,求的最大值;

(3)当取得最大值时,求二面角D-AB-C的余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2010年广东省深圳市罗湖区高考数学精编模拟试卷(理科)(解析版) 题型:解答题

如图(甲),在直角梯形ABED中,AB∥DE,AB⊥BE,AB⊥CD,且BC=CD,AB=2,F、H、G分别为AC,AD,DE的中点,现将△ACD沿CD折起,使平面ACD⊥平面CBED,如图(乙).
(1)求证:平面FHG∥平面ABE;
(2)记BC=x,V(x)表示三棱锥B-ACE的体积,求V(x)的最大值;
(3)当V(x)取得最大值时,求二面角D-AB-C的余弦值.Pn(xn,yn

查看答案和解析>>

同步练习册答案