精英家教网 > 高中数学 > 题目详情
x>0时,证明:不等式ln(1+x)>x-x2成立.

思路分析:欲证x>0时,ln(1+x)>x-x2,可以证F(x)=ln(1+x)-(x-x2)>0易知F(0)=0,因此可以考虑证F(x)在(0,+∞)上是增函数.

证明:设f(x)=ln(1+x),g(x)=x-x2,f′(x)=,g′(x)=1-x,

F(x)=f(x)-g(x)=ln(1+x)-(x-x2),F′(x)=f′(x)-g′(x)= -(1-x).当0<x时,F′(x)=f′(x)-g′(x)=>0,因此当x>0时总有F′(x)>0.∴F(x)在(0,+∞)上是增函数.∴当x>0时,F(x)>F(0)=0,即ln(1+x)-(x-x2)>0.∴ln(1+x)>x-x2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).数列{an}满足f(an+1)=
1f(-2-an)
(n∈N*
(Ⅰ)求f(0)的值,判断并证明函数f(x)的单调性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得点(t,as)、(s,at)都在直线y=kx-1上,试判断是否存在自然数M,当n>M时,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上恒不为0的函数y=f(x),当x>0时,满足f(x)>1,且对于任意的实数x,y都有f(x+y)=f(x)f(y).
(1)求f(0)的值; 
(2)证明f(-x)=-
1f(x)
; 
(3)证明函数y=f(x) 是R上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).数列{an}满足f(an+1)=
1
f(-2-an)
(n∈N*)

(Ⅰ)求f(0)的值,判断并证明函数f(x)的单调性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得点(t,as)、(s,at)都在直线y=kx-1上,试判断是否存在自然数M,当n>M时,an>0恒成立?若存在,求出M的最小值,若不存在,请说明理由;
(Ⅲ)若a1=f(0),不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(1+logf(1)x)
对不小于2的正整数恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在实数R上的函数,g(x)是定义在正整数N*上的函数,同时满足下列条件:
(1)任意x,y∈R,有f(x+y)=f(x)f(y),当x<0时,f(x)>1且f(-1)=
5

(2)g(1)=f(0),g(2)=f(-2);
(3)f[g(n+2)]=
f[(n+3)g(n+1)]
f[(n+2)g(n)]
,n∈N*
试求:
(1)证明:任意x,y∈R,x≠y,都有
f(x)-f(y)
x-y
<0

(2)是否存在正整数n,使得g(n)是25的倍数,若存在,求出所有自然数n;若不存在说明理由.(阶乘定义:n!=1×2×3×…×n)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
(a≠0且a≠1).
(1)试就实数a的不同取值,写出该函数的单调递增区间;
(2)已知当x>0时,函数在(0,
6
)
上单调递减,在(
6
,+∞)
上单调递增,求a的值并写出函数的解析式;
(3)(理)记(2)中的函数的图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出l的方程;若不存在,请说明理由.
(文) 记(2)中的函数的图象为曲线C,试问曲线C是否为中心对称图形?若是,请求出对称中心的坐标并加以证明;若不是,请说明理由.

查看答案和解析>>

同步练习册答案