精英家教网 > 高中数学 > 题目详情

数列

   (1)求数列的通项公式;

   (2)等差数列 成等比数列,求Tn.

解:(1)

以上两式相减得

,                                                      

                                                     

   (2)由(1)知

,                                   

                                      

,                                                        

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列an中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列an的通项公式;
(2)设由bn=
Sn
n+c
(c≠0)构成的新数列为bn,求证:当且仅当c=-
1
2
时,数列bn是等差数列;
(3)对于(2)中的等差数列bn,设cn=
8
(an+7)•bn
(n∈N*),数列cn的前n项和为Tn,现有数列f(n),f(n)=
2bn
an-2
-Tn
(n∈N*),
求证:存在整数M,使f(n)≤M对一切n∈N*都成立,并求出M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a2+b3=a3+b2=7.
(1)求{an},{bn}的通项公式;
(2)记cn=an-2010,n∈N*,An为数列{cn}的前n项和,当n为多少时An取得最大值或最小值?
(3)(理)是否存在正数K,使得(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥K
2n+1
对一切n∈N*均成立,若存在,求出K的最大值,若不存在,说明理由.
(4)(文)求数列{
an
bn
}
的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,Sn=n2+n,数列{bn}的通项公式为bn=xn-1
(1)求数列{an}的通项公式;
(2)设cn=anbn,数列{cn}的前n项和为Tn
①求Tn
②若x=2,求数列{
nTn+1-2nTn+2-2
}的最小项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项的和为Sn,且公差d>0,a4•a5=10,a3+a6=7,
(1)求数列{an}的通项公式
(2)从数列{an}中依次取出a1,a2,a4,…,a2n-1,…构成一个新数列{bn},求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:江西省月考题 题型:解答题

设数列{an}的前n项和为Sn,且对任意n∈N*都有an>0,且满足(a1+a2+…+an2= a13+a23+…+an3
(1)求数列{an}的通项公式;
(2)当0<λ<1时,设bn=(1-λ)(an+),cn=λ(an+1) ,数列{}的前n项和为Tn,求证:Tn

查看答案和解析>>

同步练习册答案