精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin(2x+
π3
),x∈R

(1)用五点作图法作出的f(x)图象;
(2)求函数f(x)的单调递减区间.
分析:(1)用五点法作函数在一个周期上的简图.
(2)令 2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
,k∈z,求得x的范围,即可求得函数f(x)的单调递减区间.
解答:解:(1)列表:
 2x+
π
3
 0  
π
2
 π  
2
 2π
 x -
π
6
 
π
12
 
π
3
 
12
 
6
 f(x)  0  2  0 -2  0
画出函数的图象:

(2)令 2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
,k∈z,可得 kπ+
π
12
≤2x+
π
3
≤kπ+
12
,k∈z.
故函数f(x)的单调递减区间为[kπ+
π
12
,kπ+
12
],k∈z.
点评:本题主要考查用五点法作函数y=Asin(ωx+∅)在一个周期上的简图,求函数y=Asin(ωx+∅)的减区间,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案