精英家教网 > 高中数学 > 题目详情

如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,有为B1C的中点.

(1)

求直线BE与A1C所成的角的大小

(2)

在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出若不存在,请说明理由

答案:
解析:

(1)

  以B为原点,建立和图所示的空间直角坐标系,∵AC=2a,∠ABC=

  ∴AB=BC=,∴B(0,0,0),C(0,,0),A(,0,0),A1(,0,3a),C1(0,,3a)

  ∴D,E

  ∴==

  ∴=0-a2+=

  ∴cosθ=.故BE与A1C所成的角为arccos

(2)

  假设存在点F,要使CF⊥平面B1DF,只要,不妨设AF=b,则F(,0,b-3a),=(,-,b),=(,0,b-3a),=

  ∵·=a2-a2=0

  ∴恒成立,·=2a2+b(b-3a)=0b=a或b=2a.故当=a或2a时,CF⊥平面B1DF

  点评:如果在第(2)问中,·=0与=0不能同时成立,则说明在线段AA1上不存在点F,使CF⊥平面B1DF


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案