精英家教网 > 高中数学 > 题目详情
若x∈(1,2),不等式x2+mx+4<0恒成立,求m取值范围,能否用不等式解决?
解:此题不能用不等式求解。
令f(x)=x2+mx+4,由图知

即m≤-5。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1的中心和抛物线C2的顶点都在原点,且两曲线的焦点均在x轴上,若A(1,2),B(2,0),C(
2
2
2
)
中有两点在椭圆C1上,另一点在抛物线C2上.
(Ⅰ)求椭圆C1和抛物线C2的方程;
(Ⅱ)设直线l与椭圆C1交于M,N两点,与抛物线C2交于P,Q两点.问是否存在直线l使得以线段MN为直径的圆和以线段PQ为直径的圆都过原点?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
3
2
x2-mx

(Ⅰ)若函数f(x)图象上任意一点处的切线的倾斜角均不小于
π
3
,求实数m的取值范围;
(Ⅱ)设m=2,若存在x0∈[1,2],不等式|a+3x0|-x0f′(x0)<0成立,求实数a的取值范围;
(III)已知k∈R,讨论关于x的方程f(x)+mx=
4
3
(x2+x)+k
在区间[2,4]上的实根个数(e≈2.71828)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a
(1)如果对任意x∈(1,2],f'(x)>a2恒成立,求实数a的取值范围;
(2)设实数f(x)的两个极值点分别为x1x2判断①x1+x2+a②x12+x22+a2③x13+x23+a3是否为定值?若是定值请求出;若不是定值,请把不是定值的表示为函数g(a)并求出g(a)的最小值;
(3)对于(2)中的g(a),设H(x)=
1
9
[g(x)-27],m,n∈(0,1)且m≠n,试比较|H(m)-H(n)|与|em-en|(e为自然对数的底)的大小,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+x2-ax,其中常数a∈R,x∈R.
(1)若函数f(x)在区间(1,2)上不是单调函数,试求a的取值范围;
(2)如果存在a∈(-∞,-1],使函数h(x)=f(x)+f′(x),x∈[-1,b](b>-1),在x=-1处取得最小值,试求b的最大值.

查看答案和解析>>

科目:高中数学 来源:0119 期中题 题型:解答题

对于正整数a,b,存在唯一一对整数q和r,使得a=bq+r,0≤r<b。特别地,当r=0时,称b能整除a,记作b|a,已知A={1,2,3,…,23},
(1)存在q∈A,使得2011=91q+r(0≤r<91),试求q,r的值;
(2)求证:不存在这样的函数f:A→{1,2,3},使得对任意的整数x,y∈A,若|x-y|∈{1,2,3},则f(x)≠f(y);
(3)若BA,card(B)=12(card(B)指集合B中的元素的个数),且存在a,b∈B,b<a,b|a,则称B为“和谐集”。求最大的m∈A,使含m的集合A的有12个元素的任意子集为“和谐集”,并说明理由。

查看答案和解析>>

同步练习册答案