精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,直线A1D与直线D1B1所成的角为
60°
60°
分析:连接BD、A1B,在等边△A1BD中得到∠A1DB=60°,再证四边形BB1D1D是平行四边形,从而B1D1∥BD,所以∠A1DB就是直线A1D与直线D1B1所成的角,得到答案.
解答:解:连接BD、A1B,设正方体的棱长为1,则A1B=BD=A1D=
2

∴△A1BD是等边三角形,∠A1DB=60°
∵正方体ABCD-A1B1C1D1中,BB1∥DD1且BB1=DD1
∴四边形BB1D1D是平行四边形,B1D1∥BD
∴∠A1DB就是直线A1D与直线D1B1所成的角
故答案为:60°
点评:本题以正方体为例,求异面直线所成的解,考查了空间两条直线的位置关系和正方体的性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案